

	 	
Elements of
a Windows
tailored
app: The
Developer
Story	

M3 (PDC-4) Edition

This version targets the PDC-4 build
and is the final installment.

For questions please contact
manavm and ialegrow

To submit feedback or corrections
on this document please send mail

to win8eom

For questions and how-to’s on
developing modern applications
please send mail to dog8appbld

Elements of Mosh: the developer story Page 1 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1 TABLE OF CONTENTS

2 Overview .. 8

2.1 Windows 8 – A new Application Paradigm .. 8

2.2 What is a Modern App? ... 8

2.3 Why Developers Will Want to Write Modern Apps ... 9

2.4 Steps to Building a Modern App .. 10

2.4.1 Choosing to Build a WWA or an MCA Immersive Application ... 10

2.5 Taxonomy .. 14

3 Modern App Model ... 17

3.1 Summary of Modern Application Properties ... 17

3.2 Packaging & Manifest .. 18

3.2.1 A Sample Manifest ... 18

3.2.2 References ... 27

3.3 Package Identification .. 27

3.4 Application Packages, Framework Packages & Dependencies .. 29

3.5 Confidence ... 31

3.5.1 Application Containers ... 31

3.5.2 Capabilities ... 32

3.5.3 Brokers ... 34

3.5.4 References ... 35

3.6 WWA Host ... 35

3.6.1 Web Platform ... 35

3.6.2 Configuration ... 36

3.6.3 HTML, CSS, & JavaScript ... 37

3.6.4 WWA Characteristics ... 37

3.6.5 Local Context & Web Context .. 37

3.6.6 Web Navigation Model .. 41

3.6.7 Web Security, Same Site Origin, and XmlHttpRequest .. 43

3.6.8 Error Handling and Display .. 45

3.6.9 File Downloads ... 47

Elements of Mosh: the developer story Page 2 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.6.10 JavaScript Changes ... 52

3.6.11 Offline Execution .. 53

3.6.12 State & Settings ... 53

3.7 View Sizing and Scaling .. 58

3.7.1 View Sizing ... 58

3.7.2 View Scaling ... 75

3.8 Resources and Localization .. 78

3.8.1 Quick Start ... 78

3.8.2 Creating Resources .. 79

3.8.3 Building .. 82

3.8.4 Using Resources ... 83

3.8.5 HTML Fragment Loading .. 85

3.8.6 HTML Data-Binding and Resources .. 85

3.8.7 Application Manifest .. 86

3.8.8 Libraries, Frameworks and Other Components ... 86

3.8.9 Overriding the Current Context ... 87

3.8.10 Using Multiple Resource Files .. 87

3.8.11 References ... 87

4 Elements of a MoSh App ... 87

4.1 Modern Activation ... 88

4.1.1 WWA Activation ... 89

4.1.2 WinRT UI Activation ... 94

4.2 Tiles .. 97

4.2.1 Tile Sizes and Anatomy .. 97

4.2.2 Default Tiles ... 98

4.2.3 Tile Notifications .. 99

4.2.4 Sample JavaScript Code ... 104

4.2.5 References ... 106

4.3 Secondary Tiles .. 106

4.3.1 Overview of the secondary Tiles Contract—Source App ... 110

Elements of Mosh: the developer story Page 3 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.3.2 Sample JavaScript Code ... 110

4.3.3 References ... 111

4.4 Tile Badges ... 112

4.4.1 Badge Notifications .. 112

4.4.2 Sample JavaScript Code ... 113

4.4.3 References ... 114

4.5 Lock Screen Notifications ... 114

4.5.1 Sample Code .. 114

4.5.2 References ... 115

4.6 Toasts ... 115

4.6.1 Toast XML description ... 115

4.6.2 WinRT API Details .. 118

4.6.3 Example Code .. 118

4.6.4 References ... 119

4.7 Push Notifications .. 119

4.7.1 Requesting a Channel .. 120

4.7.2 Storing a channel ... 121

4.7.3 Sending a Toast or Tile Notification from the SErver ... 121

4.7.4 Example Code .. 122

4.7.5 References ... 123

4.8 Snapping .. 123

4.8.1 Application Layout ... 123

4.8.2 How to Think of the Snapped State ... 124

4.8.3 Designing for the Snapped State ... 124

4.8.4 Application Layout API ... 128

4.8.5 References ... 133

4.9 Application Lifecycle and Running in the Background ... 133

4.9.1 Handling Suspend .. 134

4.9.2 Handling Resume ... 134

4.9.3 Application Crash or Hang ... 135

Elements of Mosh: the developer story Page 4 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.9.4 Background Audio .. 135

4.10 Search .. 136

4.10.1 Overview of the Search Contract—The Source App Contract ... 137

4.10.2 The Target App Contract .. 139

4.10.3 Sample JS Code .. 140

4.10.4 References ... 141

4.11 Share .. 141

4.11.1 Overview of the Share Source App Contract ... 143

4.11.2 Overview of the Share Target App Contract .. 145

4.11.3 Sample JavaScript Code ... 149

4.11.4 References ... 149

4.12 Settings Charm - Application Settings .. 150

4.12.1 User Experience ... 150

4.12.2 Overview of the Application Settings Contract .. 151

4.12.3 Application Settings UI Recommendations .. 152

4.12.4 Sample JavaScript Code ... 153

4.12.5 References ... 154

4.13 File Picker ... 154

4.13.1 The File Picker System Flow ... 157

4.13.2 WinRT API Details .. 157

4.13.3 Sample JavaScript Code ... 159

4.13.4 References ... 159

4.14 File Picker Extension .. 160

4.14.1 Hosted App .. 162

4.14.2 WinRT API Details .. 163

4.14.3 Sample JavaScript Code ... 164

4.14.4 References ... 164

4.15 File System Broker ... 164

4.15.1 The File Access System Flow .. 165

4.15.2 WinRT API Details .. 166

Elements of Mosh: the developer story Page 5 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.15.3 Sample JavaScript Code ... 173

4.15.4 References ... 174

4.16 Connect – Print .. 175

4.16.1 The Print Source App Contract .. 176

4.16.2 Sample JavaScript Code ... 177

4.16.3 References ... 177

4.17 Connect - PlayTo .. 177

4.17.1 The PlayTo Source App Contract .. 179

4.17.2 WinRT API Details .. 181

4.17.3 Sample JavaScript Code ... 181

4.17.4 References ... 182

4.18 Connect – Send .. 182

4.18.1 Overview of the Send Source App Contract .. 184

4.18.2 Overview of the Send Target App Contract ... 187

4.18.3 Sample Javascript Code ... 189

4.18.4 References ... 190

4.19 Controls .. 190

4.19.1 Using Controls .. 194

4.19.2 Modern Collections .. Error! Bookmark not defined.

4.19.3 Flip View ... 201

4.19.4 Application Command UI ... 203

4.19.5 Application Bar ... 205

4.19.6 Splash Screen ... 207

4.19.7 Message Dialog .. 210

4.19.8 Context Menu .. 213

4.20 Personality ... 217

4.20.1 Animations ... 217

4.20.2 WWAs and Animations .. 220

4.21 Keyboard / Input Pane ... 221

4.21.1 IHM Scenarios .. 222

Elements of Mosh: the developer story Page 6 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.21.2 Sample JavaScript Code ... 222

4.21.3 References ... 224

4.22 File Associations and Protocol Extensions ... 225

4.22.1 File Associations ... 225

4.22.2 Protocol Extensions ... 226

4.22.3 Launching Files or Protocols .. 227

4.22.4 WinRT API Details .. 227

4.22.5 References ... 228

4.23 Credential Management .. 228

4.23.1 Web Service Authentication .. 228

4.23.2 CredVault ... 232

4.23.3 References ... 233

4.24 Summary of Modern Application Extension Points ... 233

5 App Store and Application Acquisition .. 234

5.1 The Onboarding and Certification Experience ... 234

5.1.1 Developer Portal High Level Diagram .. 235

5.1.2 Certification Workflow High Level Diagram ... 235

5.1.3 References ... 236

5.2 Discovery points: Browse, Search, Lists, and Deep Linking ... 236

5.3 Selling the App: Product Description Page and Acquisition ... 238

5.4 Install UX .. 239

5.5 Licensing and the In-App Purchasing experience .. 239

5.5.1 Trial to Full License Conversion .. 239

5.5.2 In-App Purchases ... 242

5.6 Servicing & Updating the App .. 245

5.7 Analytics & Getting Paid .. 245

5.8 Uninstall UX ... 247

6 Developer Tools and Debugging .. 247

6.1 Search and Discovery ... 247

6.2 Acquisition of Tools ... 248

Elements of Mosh: the developer story Page 7 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

6.2.1 Visual Studio .. 248

6.2.2 Expression Blend .. 249

6.2.3 Additional Choices ... 249

6.3 Application Development .. 250

6.4 Debugging .. 250

6.4.1 Obtaining a Developer License .. 251

6.4.2 Deploying the Application .. 251

6.4.3 Immersive Window .. 251

6.4.4 (WWA Only) Switching the WWA Host into Debug Mode ... 252

6.4.5 Attaching the Debugger ... 252

7 Developer Guidance .. 252

7.1 One or Multiple Apps Per Package? .. 252

7.1.1 Business Impact ... 252

7.1.2 Technical Impact .. 254

7.1.3 The Solution ... 257

7.2 Relationship Between MoSh and Desktop Apps .. 259

7.2.1 App First ... 259

7.2.2 File System Access Via Pickers ... 259

7.3 Working with Devices .. 263

7.3.1 A Taxonomy of Device Functionality .. 263

7.3.2 Programming Model Considerations ... 264

7.3.3 User Confidence in Device Access ... 265

7.3.4 List of Supported APIs .. 267

7.3.5 Vertical Scenarios: Device Innovation and Device Companion Applications 268

7.3.6 Examples of Working With Devices ... 269

8 Sample Apps and Additional Links ... 274

Elements of Mosh: the developer story Page 8 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

2 OVERVIEW

Windows 8 introduces a new programming paradigm that developers can use to create a modern,
polished user experience. This new, Modern Application model makes it simple to get apps on the
machine and makes it just as simple to remove them. Modern apps push application experiences to the
forefront, immersing users in the experiences they offer.

This document, written for developers, describes the core elements of the Modern Application model
and all the capabilities it offers developers. It provides an overview of the Modern Application model,
then walks through the application development lifecycle, from application development and packaging,
to Modern Shell (MoSh) integration and controls, to activation, to integration with the App Store.

2.1 WINDOWS 8 – A NEW APPLICATION PARADIGM

A key benefit provided by Windows 8 is the availability of a new programming paradigm. You can use
this new programming paradigm to develop applications with an enhanced look-and-feel that provide a
better user experience. There are three key elements of this new paradigm:

• A new app model. Windows 8 ships with a new application model that will earn consumer
confidence and trust by making it safe and simple to get apps on the machine and just as safe
and simple to remove them. The new application model gives developers an additional language
choice: HTML5, now a first-class Windows app development language. It also provides the
Windows Runtime, a set of API that exposes the power of Windows in several languages.

• A new, immersive shell. A new modern shell, the MoSh, is the place where Windows 8 app
model applications are experienced. Rather than highlighting Windows UX, the MoSh pushes
application experiences to the forefront, immersing users in the experiences they offer. The
modern shell is optimized for touch and includes simplified window management, notifications,
process lifetime management, and more. A new set of controls, animations, patterns and
personality characteristics showcase a modern, polished experience.

• An application store / marketplace. The Windows organization is building a marketplace where
consumers obtain modern apps and developers make money building Windows apps.

2.2 WHAT IS A MODERN APP?

A Modern Application is an app that runs only in the new immersive shell (the MoSh). A modern app has
the following characteristics:

• It is written to take advantage of the immersive experience in the new shell.
o It provides a UI / look & feel that is compliant with the MoSh UX model.
o It supports modern activation, windowing, and process lifetime management.

Elements of Mosh: the developer story Page 9 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

o It supports app contracts. App contracts define requirements that the application must
follow to participate in Windows controlled UI flows and experiences, such as the
following:

§ Tiles, docking, splash screen, search, share, toasts, push notifications, file
picking, app settings, connect

• It is delivered through the new deployment technology (AppX).
• It is installed per user.
• It installs and uninstalls cleanly.
• It doesn’t change the state of the OS in an irreversible way.
• It runs in an Application Container.
• It can be terminated predictably by the user.

2.3 WHY DEVELOPERS WILL WANT TO WRITE MODERN APPS

The Modern Application model—along with a set of development tools, a developer center, and an app
store—enables you to reduce development costs for building modern applications that leverage the
power of Windows and make more money.

The Modern Application model provides the following benefits:

• Quick Development: The Developer Center, new tools optimized for modern apps, multiple
language choices, and robust presentation frameworks help you quickly develop full-functioning
apps that look great.

• Quick Deployment: The App Store makes deployment simple.
• Quick Updates: The App Store enables seamless app updates.
• Quick Money: The new app model and platform provide system protection, user data and

privacy protection, and a restricted, partitioned execution environment. These benefits, along
with confidence inspired by the App Store validation, reputation information, and one-stop app
updating encourage more application installs and generate more money for you.

The Windows 8 developer experience starts at the new Developer Center, which provides streamlined
access to state of the art tools and community information about developing apps for Windows 8. The
new tools and underlying platform enable the developer to choose a language and presentation
framework—HTML/JS/CSS, XAML/C++, or XAML/c#—and quickly get started. With the availability of
HTML/JS as a Windows development option, web develops can use their existing skills to begin creating
powerful client applications.

The new application model makes it easy for you to create applications that quickly install and uninstall
without changing the state of the system. The protected execution environment makes it easier for
users to trust that your application won’t harm their system or invade their privacy. The new developer
tools make it easy for you to design your app’s UI, perform runtime debugging, and publish to the App

Elements of Mosh: the developer story Page 10 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Store. The developer tools even check that your app meets store requirements as you’re coding it! The
developer tools even check that your app meets store requirements as you code, ensuring that you’ll be
ready to sell your app as soon as it’s finished.

Once your app is in the App Store, it will be matched up with customers based on curated lists,
recommendations, and reviews. Updating your app is easy: just submit the update to the store, and it
will seamlessly deliver the update to your customers.

More app downloads means more money for you. The safety of the new platform instills customer
confidence, and the ability to simply click to install and run new apps encourages customers to
download more apps. Each month, the Windows store will send you a check and provide access to
telemetry for your apps.

2.4 STEPS TO BUILDING A MODERN APP

Creating a modern application involves five steps:

1. Author the app’s core functionality. If you’re building a photo viewing app or a music player,
build that functionality first, keeping in mind the look and feel and UX guidelines of modern
applications (such as. touch optimization, a full-screen experience, and so on).

2. Tailor the app to Windows, the form factor, and the experience. Implement the required and
recommended set of application contracts. These contracts define requirements that
applications must follow to participate in Windows Controlled UI Flows and Experiences.
Further contract specific details are outlined later in the document.

3. Package the app. Package the application using the modern packaging technology. Visual Studio
does this work for you.

4. Test and Debug the app. Ensure the app is working as expected.
5. Upload the app to the App Store. Modern applications are installed by users from the App

Store. Again, Visual Studio assists with this process, though there’s an online portal available as
well.

2.4.1 CHOOSING TO BUILD A WWA OR AN MCA IMMERSIVE APPLICATION

There are two types of application technologies available in Windows 8 for creating immersive
applications (internally and externally), Windows Web Applications (WWAs) that are written in HTML,
CSS, and JavaScript, and Modern Client Applications (MCAs) that are written in C++ or C# using the
WinRT UI framework built into Windows 8 (formerly known as Jupiter).

Windows 8 Immersive Apps User Interface (View) Application Logic

Elements of Mosh: the developer story Page 11 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

are:

• AppX Packaged

• Installed through the
App Store

• Run in AppContainer

Technology for Immersive Apps (Model/ViewModel/Controller)
Technology for Immersive Apps

HTML + JavaScript

• JavaScript

• C++

• C#

WinRT (Windows Runtime) UI

• C++

• C#

• Both WWA and MCA applications, through HTML/CSS/JavaScript and through Win RT UI
respectively, can use all of the standard Windows 8 UI controls (timelines for availability may
differ between WWA and MCA applications). These controls render with the with the Windows
8 look and feel.

• Both WWA and MCA applications have access to the WinRT APIs and are enabled through inbox
libraries and components, not requiring external dependencies on Framework Packages.

• Both WWA and MCA applications can be extremely responsive for touch interaction and can
have great performance on low and high end hardware, especially when using the WinRT APIs.

• Both WWA and MCA applications have support through Visual Studio for Windows 8 and tools
like the Expression Suite of application design tools (timelines for availability of various feature
support may differ between WWA and MCA applications).

• Both WWA and MCA applications can reuse existing web content (MCAs through hosting
Trident) and native code (WWAs through WinRT Native Extensibility) as a part of their
application logic.

Scenario Focused Development

When developing software or technologies, it’s common to focus on technical considerations, such as
architectures, platforms, and systems, rather than the experiences and scenarios the software should
support.

Elements of Mosh: the developer story Page 12 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The Windows 8 application model is designed so that you can focus on experiences and scenarios: in
fact, scenario focused engineering is at the heart of Windows 8 and the immersive application model.
No matter which application programming technology you choose—a WWA coded with HTML and
JavaScript, an MCA that uses C++ or C#, or a combination of the two—you can build a beautiful
application experience that conforms to the look and feel of Windows 8’s immersive shell. The
following are three pivots that you can use to make a choice between a WWA and an MCA.

The following decision matrices and information should help you decide the best technology for your
applications.

Customer Experiences:

Experiences WWA MCA
Paint applications Yes. Consider using the HTML 5 Canvas that

allows you to draw pixels!
Yes. DirectX provides rich
features for textures, pixel
shaders, etc.

RSS Readers/Web Reader
Applications

Yes. Yes.

Sprite Based Games Yes. Yes.
3-D Games No. Even though you can build applications

that are pseudo 3-D using Canvas
(http://dev.opera.com/articles/view/creating-
pseudo-3d-games-with-html-5-can-1/), this
will not have the level of performance of an

Yes.

 technology
feasibility

business
opportunity

customer
experience

Elements of Mosh: the developer story Page 13 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

MCA
e-Book Reader
Applications

Yes. Yes.

Photography Editing
Applications

Yes. Many photo effects can be processed off-
screen through native code using WinRT.

Yes.

Travel Applications Yes. Yes. WinRT uses XAML,
but this XAML is not
compatible with
Silverlight. When hosting
things like the Bing Maps
control, MCAs will need to
host Trident like a WWA
manually or consider using
alternative hosting
mechanism for Silverlight
and Flash which may not
run in the Application
Container.

Music Applications Yes. Yes.

Business Opportunities:

Experiences WWA MCA
Would like to re-use large
portions of an existing web
property so that Windows 8
immersive application updates
along with an externally facing
web site

Yes. No. Even though it is possible
through hosting Trident, the
overhead and complexity of
doing this doesn’t justify using
an MCA over a WWA when the
WWA hosts Trident for you.

Share large portions of native
code (backend code, not UI
code) with my desktop
applications

Yes. You will have to expose
native code through WinRT
which may change your data
model significantly.

Yes.

Build a set of common HTML
resources to use across my sites
and applications

Yes. No.

Build a set of common XAML
resources across Windows
Phone, Windows 8, and Xbox

No. Yes. This is a huge advantage for
developers building applications
using XAML for Windows Phone
and Xbox 360.

Elements of Mosh: the developer story Page 14 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Host web based ads to present
to users as a form of
monetization

Yes. There is amazing work for
security here with web and local
compartments that prevent ads
from accessing WinRT.

No. Many web based ad
properties require the logic of a
site and URLs. It is possible to
host web based ads by hosting
Trident, but this work would add
unneeded complexity when
writing a WWA would provide
this more easily.

Technology Feasibility:

Experiences WWA MCA
Direct Access to the GPU through DirectX,
DirectImage, DirectComposite, D2D, D3D,
and so on.

No. Yes.

Use of the GPU through Blobs and Events
behind the scenes without drawing
(DirectCompute)

Yes. Yes.

Use of Frameworks like Adobe AIR and
XNA

No. No.

Developers with XAML or native code
experience

No. Yes.

Designers with HTML, JavaScript, Flash
Experience

Yes. No.

Designers with XAML, DUI, Splash UI, Net
UI experience

No. Yes.

Must guarantee uninterrupted high
performance with advanced multi-
threading for intensive background
operations

Yes. Though JavaScript is traditionally single-
threaded (run on the UI thread), most WinRT
APIs are asynchronous. Additionally, WWAs
support “HTML5” web workers.

Yes.

2.5 TAXONOMY

Taxonomy
MoGo, Start The new launcher for Windows 8. It is intended to be the replacement for

the start menu. It includes both MoSh and classic apps.
Edgy The collection of edge-based UI in the immersive shell: switching apps, the

Charms Bar, and the App Bar.

Elements of Mosh: the developer story Page 15 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Swipe A touch gesture that invokes edge-based UI. The gesture starts at the edge
of the screen and then drags perpendicular to the edge and interior to the
screen.

Snapped App When two applications are displayed at one time side by side, there will be
one app which is smaller and one that is larger. The snapped application is
the smaller application.

MoBody The portion of the screen where the main app runs. In full-screen mode,
there is no snapped app shown and the MoBody app occupies the entire
screen. When a snapped app is present, the MoBody resizes itself so that it
occupies the remainder of the screen.

Charms Bar Formerly known as “the lucky charms bar,” a vertical bar containing entry
points to a number of different system UI components. It is a component of
Edgy.

App Bars Modern application-defined UI affordances that typically provide access to
application commands, and are invoked with a vertical swipe. They are
invoked through Edgy.

App Switching An edgy gesture from the left side of the screen to switch between your
most recently used apps.

MoSh Application A packaged application that runs in MoSh—it runs per user and in full-
screen mode, has a manifest with declared capabilities, has stored state,
and runs in an App Container.

Classic Application A Windows application as it is in the current Windows 7 world. These
applications are installed per machine rather than per user, do not have
declarative install, and do not run in an Application Container.

WWA Windows Web Application – a “modern application” written in client-side
web technologies: JavaScript, HTML, CSS, and SVG. These applications don’t
run in a web browser; rather, they run inside the WWA host, a specialized
execution environment for these WWA applications.

MCA Modern Client Application – a “modern application” written in a traditional
Windows programming language: C, C++, C#, VB.

Manifest A required file that is part of the package that defines several portions of
the application, such as its identity, metadata, extensions, and capabilities.

WinRT, aka Windows
RunTime aka REX APIs

The set of new Windows APIs that will simplify Windows application
development. These APIs are projected into all of the Windows 8
supported languages (including JavaScript).

Application Container
(lowbox)

A new security context within which Modern Applications are executed.
Application Containers help protect users from attack by running with
greatly restricted capabilities on Windows 8. While Application Containers
do not protect against all forms of attack, they significantly reduce the
ability of an attack to install malicious code or compromise user’s data and

Elements of Mosh: the developer story Page 16 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

privacy.
Package A type of zip file that contains the application: it contains the files necessary

for deployment, including resources and a manifest file.
Capability A desired behavior declared in the package manifest that describes a

characteristic of the application in terms of custom scenarios. For example,
an application’s ability to access a user’s photo library is a capability.

Full Trust Application An application that is running in the same way as applications run in
Windows 7: with the full privileges of the user. Full trust applications are
not permitted in the immersive shell.

Modern API Component A set of programming interfaces available in the developer platform that
expose, enable, or participate in the delivery of capabilities to applications.
As described in the Windows Runtime, modern runtime API components
are implemented as a CoClass. Each component may expose functionality
with varying levels of capabilities and risk.

Hardened Component A component able to handle untrusted data it receives from untrusted
code. As part of the hardening process, the component goes through a
thorough security review with the Secure Windows Initiative Team (SWI).

Broker The Windows 8 confidence model depends on components that act as a “go
between” or “bridge” between processes of differing trust levels. In
particular, this term is used to describe components that offer functionality
through another process (broker process) to enable capabilities that are
otherwise not directly accessible from the Application Container
environment.

Elements of Mosh: the developer story Page 17 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3 MODERN APP MODEL

With Windows 8, Microsoft introduces the latest evolution of applications: Modern Applications. As
described earlier, Modern Applications run per user, have declared capabilities, and execute in
Application Containers. Modern Applications can be written in C, C++, C#, JavaScript and can use WinUI
(“native XAML”) or the WWA Host (augmented HTML5) for their presentation model.

Modern Applications run only in the new Modern Shell (MoSh). Modern Applications are acquired only
via the App Store, which provides modern app developers with a marketplace where they can make
money and provides an easy way to deploy, service, and update application.

3.1 SUMMARY OF MODERN APPLICATION PROPERTIES

Modern Applications have the following characteristics:

1. They are written for the immersive experience of the modern shell.
2. They are acquired through the App Store.
3. They are delivered through new packaging and deployment technology.
4. They are signed.
5. They are installed per user.
6. They install and uninstall cleanly.
7. They don’t change the state of the OS in an irreversible way.
8. They run in Application Containers (formerly LowBox).
9. They have clearly separated and isolated application state.
10. They can always be predictably terminated by the user.

Modern Applications can be further classified as Modern Client Applications (MCAs) and Windows Web
Applications (WWAs). MCAs are packaged applications written in supported Windows languages, such
as C, C#, and C++. The common UI framework choice for these apps is the Windows Runtime UI
(formerly called Jupiter), though others are available for use, such as DirectX. These applications can call
Win32 APIs in addition to WinRT APIs, though there are some restrictions around this API surface
imposed by the Application Container, a restricted execution environment where modern apps run with
a reduced subset of the user’s privileges, and the Modern SDK (approved subset of Win32 APIs that may
be called by modern applications).

WWAs are packaged applications written in standard client-side web technologies: JavaScript, HTML,
CSS, and SVG. To help create a strong WWA experience for both end-users and developers, Windows
and DevDiv are making heavy investments in the web platform by creating a new set of UI controls for
WWAs, improving touch interaction, and delivering robust tooling. Like their Modern Client Applications
counterparts, WWAs run only in the Immersive Shell. They can include native code, but only APIs
available via WinRT. WWAs only run in Application Containers.

Elements of Mosh: the developer story Page 18 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.2 PACKAGING & MANIFEST

Modern Applications are acquired from the App Store in the form of packages. A package is the smallest
atomic unit of deployment, management, and servicing of software in the Windows 8 application model.
A package is essentially an OPC-based ZIP container that includes a package manifest and a set of
binaries. Packages have the file extension “.appx”. There are two types of packages: application
packages and framework packages. These are described in the sections that follow..

When creating a Modern Application, you (as the application developer) don’t write install and uninstall
routines. Rather, you author an XML manifest, known as a package manifest, which describes the
application’s structure and capabilities to the system. This package manifest is included in the .appx
package when you upload the application to the App Store. Windows is then responsible for acting upon
the information in the manifest when installing and uninstalling the application.

3.2.1 A SAMPLE MANIFEST

The first section of the manifest references the manifest schema and declares the encoding, which is
always UTF-8 in Windows 8. Manifest validation is provided by an XSD, which will be available externally
and with accompanying tool support at RTM. It is available for internal use as part of the builds:
\\winbuilds\release\WinMain\<build>\x86fre\bin\AppxTools\MakeAppx.

<?xml version="1.0" encoding="utf-8"?>

<Package xmlns="http://schemas.microsoft.com/appx/2010/manifest">

A package contains a single manifest. The package is identified using a unique identifier, known as the
PackageID, which is a tuple made up of the following attributes: name, publisher,
processorArchitecture, version, and a resourceID. These items must be specified in the manifest.

3.2.1.1 IDENTITY

 <!--IDENTITY-->
 <Identity Name="contoso.photoviewer"
 ProcessorArchitecture="x86"
 Publisher="CN=Contoso,O=Contoso Inc.,L=Redmond
,S=Washington,C=US"
 Version="2.5.1.6"
 ResourceId="en-us" />

3.2.1.2 PREREQUISITES

Elements of Mosh: the developer story Page 19 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Packages will often require some minimum level of prerequisite functionality be resident on client
machines, as defined by the operating system and software requirements. These are specified in the
Prerequisites section.

 <!--PREREQUISITES-->
 <Prerequisites>
 <OSMinVersion>6.2</OSMinVersion>
 <OSMaxVersionTested>6.2</OSMaxVersionTested>
 </Prerequisites>

3.2.1.3 PROPERTIES

The Properties section contains additional data about the software package, such as the package’s type,
classification, and policies.

 <!--PROPERTIES-->
 <Properties>
 <Framework>false</Framework>
 <DisplayName>Contoso Photo Viewer</DisplayName>
 <PublisherDisplayName>Contoso INC</PublisherDisplayName>
 <Description>View and edit your photos</Description>
 <Logo>foo.ico</Logo>
 </Properties>

3.2.1.4 RESOURCES

The Resources section describes the UI resources provided by the application. This section declares the
languages that the package supports. Every package manifest must contain a Resources section.

 <!--RESOURCES-->
 <Resources>
 <Resource Language="en-us"/>
 <Resource Language="fr-fr"/>
 </Resources>

3.2.1.5 DEPENDENCIES

Dependencies between packages must be explicitly declared so that Windows can check and
appropriately resolve the dependencies during application acquisition. The package that takes a
dependency on another package is referred to as the dependent package. The package that fulfills the
dependency is referred to as the dependency package. When specifying a dependency, you must
specify the publisher.

The following limitations are enforced for dependencies:

Elements of Mosh: the developer story Page 20 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• Packages can only declare a dependency on Framework Packages (framework = true in the
Package Manifest).

• Packages cannot declare a dependency on themselves.

• Framework Packages cannot declare a dependency on other packages (Framework packages
with declared dependencies are just ignored).

• Packages with more than 16 dependencies declared will fail.

• Packages cannot declare dependencies on packages with dependencies. There is no support for
anything except direct dependencies. This means that the dependency graph will never be more
than one level deep.

 <!--DEPENDENCIES-->
 <Dependencies>
 <Dependency Name="Microsoft.PlatformExtensions.Corsica"
 Publisher="CN=Microsoft Corporation, O=Microsoft Inc., L=Redmond,
S=Washington, C=US"
 MinVersion="4.5.0.0"/>
 </Dependencies>

3.2.1.6 CAPABILITIES

Capabilities are declared to indicate that an application requires additional functionality beyond what is
provided to an application by default. For access to a user’s library folders or the network, for instance,
the corresponding capability must be specified.

 <!--CAPABILITIES-->
 <Capabilities>
 <Capability Name="picturesLibrary"/>
 <Capability Name="videosLibrary"/>
 <Capability Name="musicLibrary"/>
 <DeviceCapability Name="webcam"/>
 <DeviceCapability Name="A3A8783C-4844-4b09-9E7A-9E8003D4E20B"/>
 </Capabilities>

3.2.1.7 APPLICATIONS

A package may contain one or more applications. A package’s applications are specified in the
Applications section of the package manifest. Note that these applications cannot be installed
separately—the package itself is the smallest unit of software that can be added, updated, or removed
from the system.

Elements of Mosh: the developer story Page 21 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

<!--APPLICATIONS-->
<Applications>
<!--Web app-->
<Application Id="Office.PowerPoint" StartPage="PowerPoint\Index.html">
…
</Application>

<!--Native app-->
<Application Id="Office.Word" Executable="Work\WinWord.exe"
EntryPoint="Office.Winword.Class" >
…
</Application>

3.2.1.8 VISUAL ELEMENTS

As the name suggests, the Visual Elements section is used to declare the visual aspects of the
application. These aspects include display name, application logos that are displayed in multiple places
on the system, and others. The Visual Elements tag is contained within (a child of) the Application tag
within the manifest.

• DisplayName – Application DisplayName is a required attribute that defines the default name for
the application as the developer intends must appear on the app. DisplayName is localizable.

• Logo – Application Logo is a required attribute that supplies the common image, used for the MoGo
1x1 tile. Also used in File Extension Logo unless replaced by developer. Logo is localizable. Required
sizes are 1x@152x152. Supported formats are .png and .jpg.

• SmallLogo – Application SmallLogo is also a required attribute that supplies the common image,
used for Tiles (2x1 and 1x1), MoGo - All Programs view, MoSettings. Also used in File Extension Logo
unless replaced by developer. SmallLogo is localizable. Required sizes are 1x@32x32. Supported
formats are .png and .jpg.

• Description – A string for the description of the application. This string is localizable. This is also a
required attribute. All per-application extensions can use the value of this attribute if they require it.

• ForegroundText – Specifies a tile’s foreground text is dark or light. This is also a required attribute.
• BackgroundColor – Specifies a tile’s background color. This is also a required attribute.
• ToastCapable – This is an optional Boolean attribute. It includes information enabling application to

show or not show toast.
• InitialRotationPreference – This is an optional attribute. It’s value is used to set the rotation

preference on behalf of the app so that when the app is displayed it will have that setting. If
developers want a portrait-only app they can just set this once in the manifest. It is possible for apps
to change this preference at runtime via Rotation Manager APIs. It also provides the rotation
preference for the app splash screen.

• DefaultTile – This optional element contains the following attributes;
o ShortName: Optional. Name appears on the tile. Allowed limit is 13 characters only.

Elements of Mosh: the developer story Page 22 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

o ShowName: Optional. Specifies whether the app name is displayed by default when the
tile changes from the default state

o WideLogo: Optional. Used for MoSettings. Required size is 1x@312x152. Allowed file
formats are .jpeg, .jpg and .png.

• LockScreen – This optional element contains the following attributes;
o Notification: Required. Can be set to one of the 3 options; tileText, badge,

badgeAndTileText.

o BadgeLogo: Optional. Used to provide the logo for the Lock Screen, next to badge
notifications eg: Mail Icon. Note that this image is required if Notification is set to badge
or badgeAndTileText. Required size is 1x@24x24. Allowed file formats are .jpeg, .jpg and
.png. Image must be monochromatic (white & transparent pixels only)

• SplashScreen – This required element contains the following attributes;

o BackgroundColor: Optional. Specifies the splash screen’s background color. If not
specified, default background color will be used.

o Image: Required. Specifies the path to the image required for splash screen. Required
size is 1x@624x304. Allowed file formats are .jpeg, .jpg and .png.

<!—VISUAL ELEMENTS-->
<VisualElements DisplayName="Microsoft Word" Logo="Images\word.png"
SmallLogo="Images\word2.png" Description="Word from Microsoft Office
family" ForegroundText="dark" BackgroundColor="#777777"
ToastCapable="true" InitialRotationPreference="portraitAndFlipped">
 <DefaultTile ShortName="Word" ShowName="true" WideLogo="bar.png"/>
 <LockScreen Notification="badgeAndTileText"
BadgeLogo="Icons\lockscreenimage.png"/>
 <SplashScreen BackgroundColor="blue" Image="photo.jpg"/>
</VisualElements>

3.2.1.9 APPLICATION CONTENT URI RULES

ApplicationContentUriRules are a set of Windows Web Application specific declarations.

 <!—APPLICATION CONTENT URI RULES-->
 <ApplicationContentUriRules>
 <Rule Type="include" Match="http://www.example.com/"/>
 <Rule Type="exclude" Match="http://www.w3.org/People/Dürst/"/>
 <Rule Type="exclude" Match="*.pdf"/>
 </ApplicationContentUriRules>

3.2.1.10 EXTENSION POINTS

Elements of Mosh: the developer story Page 23 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

An extension point (EP) is a location defined by an application or system that permits another
application to register to have code executed or resources used. Examples include file type associations,
share target, file picker and others. Extension points are a mechanism by which an application can add
functionality in a manner defined by the operating system thereby providing a deeper, richer, and more
connected experience.

There are two distinct types of extensions:

• Per application extensions, that apply only to a single application
• Per package extensions, that apply to all applications in a package

Per-Application Extensions are scoped to a particular application and encapsulated within an application
element in the package manifest. e.g. file type extensions, sharing extensions, etc. Extensions are
category specific.

Extensions
Name Description
fileTypeAssociation A supported FileType handled by the information declared in the extension

(icon, ACID, etc.)
protocol Defines the protocol to be taken over by the application.
autoPlayContent Provides support for AutoPlay in the Mosh.
autoPlayDevice Provides support for AutoPlay in the Mosh.
shareTarget Developers of sharing applications can utilize the share functionality so that

users can share to their application from any source application. Eg.
Facebook that wants to provide share service.

sendTarget Developers of device applications can utilize the SendTo functionality so
that users can send to their application from any source application. We
call the apps that receive SendTo-able content and make it visible to other
users target applications. The target application is displayed in a flyout
window. An example target application is Windows Phone application.

search This extension is declared by an app that wants to provide search service to
other apps. For example, a bing app manifest would declare this extension,
and bing would come up as an option for searching from other apps.

filePicker The application has the ability to be hosted in the Picker and provide items,
specifically file-like items to be picked by the user, e.g. a photo from their
Flickr account.

backgroundTasks Declare background tasks of app such as network access, allow download,
etc. when suspended

contactPicker Allow applications that have a notion of people to provide contact data to
other applications.
Scenario: Andy is using Bing Maps, and clicks on the “find a friend” button.
This opens the People Picker, where Andy selects his friend Bob. Andy then
closes the Picker, and Bing Maps shows Bob’s house on the map.

userTileProvider Applications that support User Tile Provider functionality will be capable of

Elements of Mosh: the developer story Page 24 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

providing a set of assets used to represent the user throughout the system
and in third party applications.
Users will launch the Modern Settings app and be provided with a list of
User Tile provider apps that they can launch in User Tile mode.

cameraSettings Webcam manufacturers can build control applets for their devices that
expose fun effects such as various image filters, stars swirling around a
user’s head etc. Webcam capture applications and video chat applications,
can leverage these applets to offer an enhanced experience to the user.

printTaskSettings Enable print manufacturers to replace the basic print settings experience
with a Device Companion app, that allows IHVs to showcase all the features
and functionalities of the printer.

<!—APPLICATION EXTENSIONS-->
 <Extensions>
 <Extension Category="windows.fileTypeAssociation">
 <FileTypeAssociation Name="documenttypes">
 <InfoTip>Microsoft Office openable types</InfoTip>
 <EditFlags OpenIsSafe="true" AlwaysUnsafe="false"/>
 <SupportedFileTypes>
 <FileType MediaType="application/msword">.doc</FileType>
 <FileType>.docx</FileType>
 </SupportedFileTypes>
 </FileTypeAssociation>
 </Extension>

 <Extension Category="windows.protocol">
 <Protocol Name="mailto"/>
 </Extension>

 <Extension Category="windows.autoPlayContent"
EntryPoint="Moustache.View">
 <AutoPlayContent>
 <LaunchAction ActivationContext="moustacheContent"
ActionDisplayName="Funny Moustaches"
ContentEvent="ShowPicturesOnArrival"/>
 </AutoPlayContent>
 </Extension>

 <Extension Category="windows.autoPlayDevice"
EntryPoint="Moustache.Sync">
 <AutoPlayDevice>
 <LaunchAction ActivationContext="cameraDevice"
ActionDisplayName="Funny Moustaches" DeviceEvent="imageSource"/>
 </AutoPlayDevice>
 </Extension>

 <Extension Category="windows.shareTarget"
EntryPoint="MyActivateableClassId.baz">
 <ShareTarget>

Elements of Mosh: the developer story Page 25 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 <SupportedFileTypes SupportsAnyFileType="false">
 <FileType>.pdf</FileType>
 <FileType>.customFileType</FileType>
 </SupportedFileTypes>
 <DataPackageFormat>text</DataPackageFormat>
 <DataPackageFormat>HTML 2.0 Format</DataPackageFormat>
 </ShareTarget>
 </Extension>

 <Extension Category="windows.search"
EntryPoint="MyActivateableClassId.baz"/>

 <Extension Category="windows.filePicker"
EntryPoint="MyActivateableClassId.baz">
 <FilePicker>
 <SupportedFileTypes SupportsAnyFileType="false">
 <FileType>.png</FileType>
 <FileType>.bmp</FileType>
 </SupportedFileTypes>
 </FilePicker>
 </Extension>

 <Extension Category="windows.sendTarget"
EntryPoint="MyActivateableClassId.baz">
 <SendTarget>
 <SupportedFileTypes SupportsAnyFileType="false">
 <FileType>.xps</FileType>
 <FileType>.customFileType</FileType>
 </SupportedFileTypes>
 <DataPackageFormat>text</DataPackageFormat>
 <DataPackageFormat>HTML 2.0 Format</DataPackageFormat>
 </SendTarget>
 </Extension>

 <Extension Category="windows.contactPicker"
EntryPoint="MyActivateableClassId.baz"/>

 <Extension Category="windows.backgroundTasks"
EntryPoint="Fabrikam.BackgroundTask" Executable="Winword.background.exe">
 <BackgroundTasks>
 <Task Type="audio"/>
 <Task Type="network"/>
 <Task Type="timer"/>
 </BackgroundTasks>
 </Extension>

 </Extensions>

Package-specific extensions are specified by the Extensions element, a child of the Package element.
Each application included in the package may also include app-specific extensions, defined later in this
document.

Elements of Mosh: the developer story Page 26 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Extensions
Name Description
InProcessServer Allows for registration of 3rd party components with Windows Runtime.

There are two types of activatable classes: In process activatable classes
which are implemented as DLLs and out of process activatable classes
implemented as EXE servers. Each type of activatable classes have distinct
registration requirements

OutOfProcessServer
ProxyStub Interface proxy registration is necessary for each interface that is

marshaled across context boundaries.
GameExplorer Game developers will include a relative path to a Games Definition File

(GDF) along with icon or thumbnail files for Parental Controls.
Certificates Enable rising star developers to install and use per-app certificates.
DigitalRightsManagement Required for usage by the PlayReady DRM framework package only.

<!--PER-PACKAGE EXTENSIONS-->
 <Extensions>
 <Extension Category="windows.activatableClass.inProcessServer">
 <InProcessServer>
 <Path>Fabrikam.dll</Path>
 <ActivatableClass ActivatableClassId="Fabrikam.Foo"
ThreadingModel="STA">
 <ActivatableClassAttribute Name="AssemblyName" Type="string"
Value="Fabrikam.dll"/>
 <ActivatableClassAttribute Name="MajorVersion" Type="integer"
Value="4"/>
 <ActivatableClassAttribute Name="MinorVersion" Type="integer"
Value="5"/>
 </ActivatableClass>
 <ActivatableClass ActivatableClassId="Fabrikam.Bar"
ThreadingModel="both"/>
 </InProcessServer>
 </Extension>

 <Extension Category="windows.activatableClass.outOfProcessServer">
 <OutOfProcessServer ServerName="WinwordBackgroundTasks">
 <Path>Winword.background.exe</Path>
 <Arguments>/i winword.config</Arguments>
 <Instancing>singleInstance</Instancing>
 <ActivatableClass ActivatableClassId="Winword.Baz"/>
 </OutOfProcessServer>
 </Extension>

 <Extension Category="windows.activatableClass.proxyStub">
 <ProxyStub ClassId="12345678-1234-1234-1234-123456789ABC">
 <Path>ProxyStub.dll</Path>

Elements of Mosh: the developer story Page 27 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 <Interface Name="Fabrikam.IBaz" InterfaceId="12345678-1234-1234-
1234-123456789ABC"/>
 <Interface Name="Fabrikam.IBar" InterfaceId="12345678-1234-1234-
1234-123456789ABD"/>
 </ProxyStub>
 </Extension>

 <Extension Category="windows.gameExplorer">
 <GameExplorer GameDefinitionContainer="gamecontainer.dll"/>
 </Extension>

 <Extension Category="windows.certificates">
 <Certificates>
 <Certificate StoreName="Root"
Content="Certificates\Root\myroot1.cer"/>
 <Certificate StoreName="Root" Content="myroot2.cer"/>
 <Certificate StoreName="TrustedPeople" Content="mypeer1.sst"/>
 <Certificate StoreName="Issuer" Content="myissuer.cer"/>
 <TrustFlags ExclusiveTrust="false"/>
 <SelectionCriteria HardwareOnly="true"/>
 </Certificates>
 </Extension>

 <Extension Category="windows.digitalRightsManagement">
 <DigitalRightsManagement ConfigFile="PlayReadySetup.xml"/>
 </Extension>

 </Extensions>

Application-specific extensions are specified by the Extensions element, a child of the Application
element.

3.2.2 REFERENCES

1. Schema
2. Sample Manifest
3. Refer to the Package Manifest Functional Spec for an overview of all elements in the manifest.
4. Dev Design

3.3 PACKAGE IDENTIFICATION

Package Identification
Identifier Description Useage Example

Package
Identity or
packageID

Each package is defined by a
globally unique identifier
known as packageID. A

Developer friendly
representation of
package identity

<Identity Name=

"microsoft.devx.appx.connect4"
ProcessorArchitecture="neutral"

Elements of Mosh: the developer story Page 28 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

developer defines this ID in
the manifest. It consists of 5
tuples,

- Name
- Publisher
- ProcessorArchitecture
- Version
- ResourceId

that is used to
construct the
Package Monikers.

Publisher="CN=Microsoft Corporate
Root
Authority,OU=ITG,O=Microsoft,L=R
edmond,S=WA,C=US"

Version="1.0.0.0" />

Package Full
Name

The Package Full Name is
normalized string form of the
packageId. It is constructed in
the following way:
• The prefixes are removed

for each field are
removed, e.g. n=, p=, etc.

• The publisher information
is replaced with a Base32
encoding of the SHA256
hash of the publisher
string

• An underscore (_) is used
to separate the
constituent fields

PackageFullName =
<Name>_<Version>_<Architec
ture>_<
Resources>_<Base32(SHA256(
Publisher))>
This form makes it suitable for
naming objects, such as files,
& directories.

The
PackageFullName
should be used to
uniquely reference a
package on the
system, such as
when creating the
root installation
directory for a
package.

microsoft.sdksamples.newsread
er_1.0.0.0_neutral_en-
us_tf9ntdy1vxe7p

Package
Family
Name

The Package Family Name
(PFN) is normalized string
form of the packageId. It is
constructed in the following
way:
• Version, Architecture and

The
PackageFamilyNam
e should be used to
reference a package
family. It is used
when a version-

microsoft.sdksamples.newsread
er_tf9ntdy1vxe7p

Elements of Mosh: the developer story Page 29 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

ResourceId are removed.
• The publisher information

is replaced with a Base32
encoding of the SHA256
hash of the publisher
string

• An underscore (_) is used
to separate the
constituent fields

PackageFamilyName =
<Name>_<Base32(SHA256(Pu
blisher))>

independent name
of a package needs
to be referenced,
such as when
creating the root
state directory for a
package.

Package
Relative
AppId
(PRAID)

The “ID” attribute on the
Application element within
the manifest is known as
PRAID. This string uniquely
identifies an application within
a package (if a package
contains more than one app).
This is a required attribute.

It is used to
construct the
AppUserModelID

Connect4.Web

AppUser

ModelID

The AppUserModelID
(AUMID) uniquely identifies an
application on the system. It is
constructed in the following
way:

AppUserModelID =
<PFN>_<PRAID>

Its purpose is to
identify the app
uniquely to send
notification, toasts,
etc. to the specific
app.

microsoft.sdksamples.newsread
er_tf9ntdy1vxe7p_Connect4.We
b

3.4 APPLICATION PACKAGES, FRAMEWORK PACKAGES & DEPENDENCIES

A package is the smallest unit of deployment, management, and servicing of software in the Windows 8
application model. A package is essentially an OPC-based .ZIP container that includes a package manifest
and a set of binaries. There are two types of packages: application packages and framework packages.

Elements of Mosh: the developer story Page 30 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

An application package can contain one or more applications and their associated binaries and all
supported language resources. A package can contain a mix of app types, such as HTML5 (WWA), WinRT
UI (aka Jupiter), and DirectX. Although each application is referenced in the package manifest separately
(and must have its own tile that appears separately), management operations are performed on the
package as a whole and not individual applications it contains. For example, if an installed package
contains two apps, solitaire and backgammon, a user will be unable to uninstall one without also
uninstalling the other. All apps in a package run in the same Application Container and thus are able to
communicate with each other directly. Apps in different packages must rely on a restricted set of OS-
provided communication mechanisms, a byproduct of the apps being in separate Application
Containers. See the Error! Reference source not found. section of this document for more information.

Framework packages contain code that’s listed as a dependency by one or more application packages.
Framework packages are identified by the Framework element in the package manifest.

 <!--PROPERTIES-->
 <Properties>
 <Framework>true</Framework>

By design, frameworks do not contain application tiles. The App Store will support a highly controlled,
small list of frameworks for Windows 8 that are all 1st party (e.g. Microsoft produced) – Corsica
(JavaScript Framework), C Runtime, and DRM are examples.

The follow list describes some of the other rules regarding dependencies that Modern Applications must
follow:

• Application packages can declare dependencies on framework packages so that their installation
is required for the application to run. The installation of a framework package happens
seamlessly as part of application acquisition from the App Store.

• Framework packages cannot declare dependencies.
• Multiple architecture-specific framework packages should use different package names to avoid

conflicts between applications.
• Only one version of a particular framework will be on a user’s machine at any given point; all

apps that list a dependency on that framework use this single instance. In other words, if Corsica
v9 is an “update” to Corsica v8, it’s the responsibility of the framework developer (in this case,
the Corsica team) to ensure Corsica v9 doesn’t break compatibility. So apps A and B that both
have dependencies on Corsica v8 will both automatically start using Corsica v9 as soon as an app
(app C) that requires it is installed—assuming that Corsica v9 is an update to Corsica v8. If
Corsica v9 includes breaking changes, it’s the framework developer’s responsibility to publish
the new version as a separate, new framework package. In that event, apps A and B would stay
dependent on Corsica v8 while app C would depend on Corsica v9; Corsica v8 and Corsica v9

Elements of Mosh: the developer story Page 31 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

would be two entirely separate framework packages that would need to be serviced and
maintained independently by the framework developer.

• Packages declare the OS requirements (such as Windows version, service pack level, and
architecture) in the manifest as prerequisites.

3.5 CONFIDENCE

Users care about the reliability of their systems, the security of their data, and the privacy of their
information. They expect Microsoft and Windows to protect them. Our users have learned over time
that applications that are installed and run on the local PC are potential threats, whether they are
directly malicious, or simply subject to attack by malicious code. This has caused users to lose
confidence in traditional Windows applications and turn to online applications instead. They believe
that an application hosted in a browser frame is safer than an application that is installed locally.

The Windows 7 application trust model grants applications full access to the user’s private data. This
model is referred to as “full trust.” This model worked reasonably well when PCs were mostly
disconnected, and software acquisition channels were limited. Throughout the internet revolution,
Windows users have learned the hard way that installing software on their PCs is not safe. So, they are
reluctant to install desktop applications on their PC unless they believe the application is safe. This
safety is inferred primarily through brand recognition, which reduces the ability for smaller developers
to make money on the Windows platform, because they are more likely to be “unknown” and thus
“untrustworthy.”

The Windows 8 confidence model increases user confidence and control through the following features:

1. The Application Container
2. A rigorous testing process for the App Store
3. Reputation services to help the community weed out poor applications
4. An update service that delivers updates for store apps
5. As a last resort, revocation: there is a “kill-bit” mechanism to handle bad apps

3.5.1 APPLICATION CONTAINERS

An Application Container is a new security context within which Modern Applications execute. While not
a “security boundary,” application containers help protect users from attack by running with greatly
restricted capabilities on Windows 8, a set of capabilities subordinate to the user’s permissions. And
while application containers do not protect against all forms of attack, they do significantly reduce the
ability of an attack to install malicious code or compromise the user’s data and privacy. .

The Application Container design deliberately constrains modern applications from accessing resources
that are deemed important for preserving the user’s privacy and data. The design depends on setting
and enforcing these restrictions through ACLs and brokers. The intent is to give developers a rich enough

Elements of Mosh: the developer story Page 32 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

environment to be able to develop compelling applications while also increasing the confidence
customers have in downloading and using these applications.

Application Containers are aligned for the Windows 8 application model’s unit of deployment and
servicing: a package. Thus, applications within a package run in the same Application Container while
applications from separate packages run in separate Application Containers.

Within an Application Container, applications are granted certain rights. For example, they get access to
the CPU to run code. They get access to a set of “safe” devices, such as input methods like the keyboard
and touch interaction. They can communicate to each other using OS-supported IPC mechanisms, such
as RPC and named pipes, and, they get access to a private storage location ACL'd for access only by that
Application Container. Applications can use the GetTempPath function to retrieve a location for storing
temporary files.

DWORD WINAPI GetTempPath(
 __in DWORD nBufferLength,
 __out LPTSTR lpBuffer
);

For more details about the GetTempPath function, see http://msdn.microsoft.com/en-
us/library/aa364992(VS.85).aspx

3.5.2 CAPABILITIES

By default, there are a set of capabilities not allowed for apps running in an Application Container that
modern applications likely need in order to deliver compelling and useful end-user experiences.
Examples include access to libraries (pictures, music), access to networks (Internet, intranet), and access
to devices (webcam, location). Developers declare these needed additional capabilities in the app’s
application manifest. The App Store processes the declarations during the onboarding and publishing
process, validating that they’re correct and surfacing a small set of relevant information to the user so
that the user can make an informed decision about the app at acquisition time. When the user acquires
an app, they implicitly consent to the app being able to use the declared set of capabilities. The
Application Container also enforces the capabilities declarations specified in the application manifest
during runtime. An application running in an Application Container can only ever get access to
capabilities declared in the manifest; attempted access to non-declared capabilities will result in access
denied error messages. If an application has a need to add additional capabilities after publishing and
deployment, the app developer must author a new application manifest with the additional capabilities
and re-publish the application to the App Store. Additionally, users will need to “approve” the
acquisition of that updated version, as the capabilities of the application will be changed.

The follow is an example of capability declarations in a manifest.

Elements of Mosh: the developer story Page 33 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

<!--CAPABILITIES-->
 <Capabilities>
 <Capability Name="picturesLibrary"/>
 <Capability Name="videosLibrary"/>
 <Capability Name="musicLibrary"/>
 <DeviceCapability Name="webcam"/>
 <DeviceCapability Name="A3A8783C-4844-4b09-9E7A-9E8003D4E20B"/>
 </Capabilities>

While most capabilities receive user consent at app acquisition time, some capabilities require consent
at runtime. For example, sometimes it’s OK for an application like Skype to access a user’s webcam.
Other times, it’s not. Having a runtime mechanism for informing the user about webcam access puts the
user in control of their application and Windows experience.

The following list describes the different capabilities an application may declare.

Capabilities
Capability Manifest Entry Description
Internet
Networking -
Outbound only

iternetClient Gives app outbound access to the Internet and the
networks in Public places like airports and coffee shops.
This is what almost all internet applications need.

Internet
Networking

internetClientServer Gives app inbound and outbound access to the Internet
and the networks in Public places like airports and coffee
shops. Inbound access to critical ports is always blocked.
capabilityInternetClientServer is a superset of
capabilityInternetClient. Hence you do not need to
declare both.

Home/work
Networking

privateNetworkClientServer Gives app inbound and outbound access to the networks
of user's trusted places like home and the enterprise he
works for. Inbound access to critical ports is always
blocked.

Pictures Library
Access

picturesLibrary Gives app read/write access to user's pictures library
through specific runtime APIs.

Video Library
Access

videosLibrary Gives app read/write access to user's video library
through specific runtime APIs.

Music Library
Access

musicLibrary Gives app read/write access to user's music library
through specific runtime APIs.

Document Library
Access

documentsLibrary This capability provides programmatic access to files in
the users Documents library, filtered to the file types
declared by the application. For example, Word can
enumerate and open .docx files, but would not be able to
programmatically access .xlsx files. The ACLs on the
document library will not be changed; an application
must use the file broker APIs. Using the file picker still
provides access to any file, regardless of file type.

Elements of Mosh: the developer story Page 34 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Removable
Storage

removableStorage This capability provides programmatic access to files on
removable storage (USB keys, external hard drives, etc.),
filtered to the file types declared by the application. For
example, Word can enumerate and open .docx files, but
would not be able to programmatically access .xlsx
files. The ACLs on the devices will not be changed; an
application must use the file broker APIs. Using the file
picker still provides access to any file, regardless of file
type.

Default Windows
Credentials

defaultWindowsCredentials A capability that indicates the application can use a user’s
domain credentials to access intranet resources. This
capability must be enabled through a group policy before
it can be used.

Shared User
Certificates

sharedUserCertificates A capability that allows an application to access software
and hardware certificates (i.e. smart card certs). When
this capability is invoked at runtime, the user must take
action (insert card, select certificate, etc.)

Immersive
Applications

SECURITY_CAPABILITY_RUN_
IMMERSIVE

A capability that indicates the application is an immersive
application, and bound by z-banding restrictions.
This capability is never presented to the user and is
automatically applied for all AppX packages.

3.5.3 BROKERS

Applications can access capabilities that exist outside of the bounds of Application Containers by using
brokers. Brokers are simply pieces of code running with the full permissions of the user that are ACL’d so
that they can be called from Application Container code.

Guidance on how platform API developers can author brokers can be found at the following location:

http://windows/windows8/DevX/AppX/Shared%20Documents/Trust/APITrustGuidance.docx

A commonly asked question regarding Application Containers is whether it’s possible to run apps in a
more restrictive or less restrictive sub-container. Unfortunately, no concept of more restrictive sub-
containers exists. In other words, it’s not possible to establish parent-child relationships between
Application Containers in order to run less-trusted external code or data in a more isolated execution
environment.

On the other end of the spectrum, applications that require fewer restrictions than Application
Containers are discouraged from creating broker components that circumvent the Application
Container, as doing so limits the ability of the Windows 8 app model to provide a secure experience. For
example, the Application Model requires that a developer declare access to the web cam in order to
make use of it; this capability is disclosed to the user at acquisition, and can be further controlled
through privacy settings. A 3rd party could decide this restriction is too onerous and attempt to install a

Elements of Mosh: the developer story Page 35 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

broker that grants access to the webcam stream without providing disclosure or control to the end user.
The end-to-end Application Model and tooling story imposes the following restrictions to constrain such
implementations:

• The Windows Runtime tools will only support 3rd party creation of Base Trust components that
run in an Application Container and cannot be used to deliver brokered capabilities.

• The application deployment model will not support installation of desktop (full-trust) brokers.
• The application deployment model will not enable dependencies on 3rd party full-trust brokers.
• The App Store will not accept or distribute applications that have dependencies on 3rd party full-

trust brokers.
• The Windows SDK will not provide sample code or instructions for building brokers for modern

applications. All brokers available to Windows 8 applications will be first party brokers, included
in-box.

3.5.4 REFERENCES

1. http://lowbox

3.6 WWA HOST

All Windows Web Applications (WWAs) run in the WWA Host. A WWA is a Windows application written
in HTML, CSS, and JavaScript that is either completely contained in a package or partially contained in a
package with some content being delivered from the web. The WWA Host is a specialized component of
the MoSh that does the following:

• Hosts and configures the Web Platform HTML5 rendering component
• Manages when the Web Platform renders to screen and provides the user experience for error

conditions
• Provides Windows Runtime (WinRT) integration
• Expands and constrains the capabilities of JavaScript
• Bridges certain MoSh contracts between the Windows and JavaScript environments
• Manages navigation events
• Provides telemetry about WWA usage and crash data

3.6.1 WEB PLATFORM

The WWA Host is not a browser, although it uses the core rendering engine and capabilities of IE. The
WWA Host has the ability to navigate to web content and render HTML, CSS, JavaScript, and SVG, but it
doesn’t have traditional web browser features, such as tabs, an address bar, or some security and
reliability features such as the smart screen filter. The WWA Host uses a private, Windows-internal
interface from IE to obtain capabilities suited to the needs of a web application platform, called the Web

Elements of Mosh: the developer story Page 36 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Platform Control. This interface differs from the hosting interfaces the IE and MoSh browsers
themselves use uses and other traditional interfaces of Internet Explorer, such as WebOC and Trident.

Windows Web Applications
Platform

 Web Browsers

The WWA Host hard-codes many settings of the Web Platform to insure uniform behavior across
applications and to simplify the developer experience so that developers can rely on a consistent set of
behaviors and not have to code for multiple configurations.

3.6.2 CONFIGURATION

The WWA Host configures a number of settings that control the basic behavior of the Web Platform, and
there is no way for an application developer or system administrator to override these settings (even
through Group Policy). There are other settings that the WWA Host obtains from IE; these settings can
be overridden by Group Policy or user changes to settings within IE. For example, if a user changes their
proxy in IE, it will also affect all WWAs, but changing a Zone security setting has no effect on the WWA
Host.

The WWA Host configures many settings; the following are some of the most important:

1. Security Settings – These are the settings you see under Zones in IE.
2. Cookie Settings – The user cannot turn off cookies, although all cookies are isolated on a per

Application Container basis. To clear cookies, the user uninstalls the WWA.
3. Standards – Many non-standard technologies, such as DHTML, doc hosting (how Adobe .PDF

documents get displayed “inside” IE rather than launching a separate Adobe app), and IE binary

Elements of Mosh: the developer story Page 37 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

behaviors are disabled. The WWA Host displays content using the latest web standards support
available in the platform, the IE10 Standards Document mode.

3.6.3 HTML, CSS, & JAVASCRIPT

WWA code is written primarily in HTML, CSS, and JavaScript, and can optionally include third-party
WinRT objects (see below). There are a number of resources for building these applications:

o Building High-Performance WWAs – DevX Wiki (forthcoming)

TBD: CSS Transforms & Animation Info from PAC

3.6.4 WWA CHARACTERISTICS

There are a number of behavioral differences between authoring a WWA and authoring a typical
website. However, most capabilities and coding practices carry over directly from Internet Explorer. The
following table lists some of the features supported by WWAs and some of the browser features that
are not supported.

Supported Features Unsupported Browser Features
HTML, CSS, JavaScript, SVG Address Bar
WinRT access (local compartment only) Tabs and Tabbed Browsing
Unrestricted XHR (local compartment only) Toolbars, Explorer Bars, and Browser Helper

Objects (BHO)
Application Container Accelerators and WebSlices
Modern app styling (mostly provided by the
default style sheet used by WWAs)

Status Bar

 Favorites
 Navigation stack (History and Breadcrumbs)
 Restore Last Session
 Process Isolation (LCIE)
 IE Crash and Hang Recovery
 Pop-up Blocker (no pop-ups are allowed in WWAs)
 InPrivate Browsing
 VBScript
 Doc Hosting
 Legacy ActiveX

3.6.5 LOCAL CONTEXT & WEB CONTEXT

Elements of Mosh: the developer story Page 38 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

A web application acquired from the Windows store contains, at a minimum, a manifest that describes
the structure of the application and how the user starts it. At runtime, the web code of the application is
hosted by the WWAHost. The application code itself may be a mix of HTML, CSS, and JavaScript files
contained in the package, on remote web servers (as is common practice when building mash-ups), or a
combination of the two.

Web applications can greatly extend their functionality by accessing Windows Runtime (WinRT) APIs.
With great power, though, comes great responsibility. The assets behind the WinRT APIs are something
the platform needs to protect. While the Windows 8 confidence model assumes that applications from
the Windows store are not actively malicious, the web programming model often relies on dynamic
code from web servers, which are wholly separate from the Windows store and its policies. Windows
cannot rely on the security of servers hosting JavaScript code that a Windows 8 application depends on,
or the connection to these servers. (See Twitter Fixes Cross-Site Scripting Flaw for a story about a similar
security issue.)

The Windows Web App host restricts the available API surface based on code origin while at the same
time making it natural and familiar to web developers to know the context they’re operating in and do
the right thing.

In essence, there are two execution contexts: code in the local context has trusted access to the
Windows Runtime while code in the web context is untrusted, meaning it runs with restricted
capabilities similar to how browsers run web content today (there is no WinRT access, for example).

These restrictions are applied at the document level. One HTML document running as the top-level
document may run in a different context than another HTML document running in an IFrame. Such
contexts can only interact as two DOMs of different origins—communication is generally blocked except
through the HTML5 postMessage function.

/*If Document A contains a reference to the contentWindow property of
Document B, script in Document A can send a message to Document B by
calling the postMessage method as follows: */

var o = document.getElementsByTagName('IFrame')[0];
o.contentWindow.postMessage('Hello World');

/*The script in Document B can respond to the message by registering the
onmessage event handler for incoming messages. */

window.attachEvent('onmessage',function(e) {
 if (e.domain == 'example.com') {
 if (e.data == 'Hello World') {
 e.source.postMessage('Hello');
 } else {
 alert(e.data);
 }
 }

Elements of Mosh: the developer story Page 39 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

});

An alternative to using postMessage is to use the eval function from within the local context, likely
after retrieving content via XHR. The eval function will evaluate all of the script that is returned
from the XHR request or provided by the developer without restriction.

…

{ if (xmlHttp.readyState == 4)
{ element.innerHTML = xmlHttp.responseText;
var x = element.getElementsByTagName("script");

for(var i=0;i<x.length;i++)
{ eval(x.text);
} } }
…

3.6.5.1 LOCAL EXECUTION CONTEXT

Execution context is determined by where and how the DOM is loaded. Since the primary (or “top-
level”) DOM is always loaded from files delivered by application package itself rather than from the web,
the default is for this DOM to be loaded in a local execution context. This local execution context has
the following characteristics:

• It has full access to the Windows Runtime.

• It can load media resources (audio, video, images) either from the local package or by using
http:// or https:// to access remote resources.

• It can retrieve content using XmlHttpRequests (XHR) from either the local package or remote
sites without respect to same origin policy.

To help the developer ensure that untrusted content, including remote scripts, are not able to disrupt
the proper function of the application, the local execution context ensures compliance with the
following restrictions:

• The javascript: protocol is blocked to prevent potentially unsafe remote code from executing.

• HTML documents must be encoded in the UTF-8 codepage.

• Any manipulation of the DOM that can accidentally insert script, most commonly through a
method like innerHTML, is checked for potentially unsafe attributes or scripts and these are
blocked by default. This particular requirement can be overridden by the developer.

In this execution context, accessing content from the local package normally only uses the ms-wwa://
URI scheme. For example,

Elements of Mosh: the developer story Page 40 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

<script src="ms-wwa:///default.js"/> or <script src="default.js"/>

Notice the extra slash after ms-wwa:///. This is an alias for the host name of your WWA, so you don’t
have to provide the package name as part of the ms-wwa URI scheme. This is consistent with the File
URI scheme.

3.6.5.1.1 OVERLOADING LOCAL EXECUTION CONTEXT RESTRICTIONS ON INNERHTML

In some cases a developer may need to override the restrictions on innerHTML (or related functions).

To avoid this exception, there are a few options –

1. Sanitize the content with toStaticHTML() prior to insertion.

2. Create the content explicitly, using createElement() and setAttribute().

3. Use msWWA.execUnsafeLocalFunction() to insert unsafe content.

The 3rd option allows you to pass a function that will be executed without the SafeHTML validation. This
should not be used lightly, since it can allow unsafe content into your WWA. If your WWA is
manipulating web content that is not fully under your control such as advertisements, blog comments,
etc., you should not use this function since it could allow an attacker to introduce script or other unsafe
content.

3.6.5.2 WEB EXECUTION CONTEXT

While the default DOM is loaded from the local package, and displayed in the local execution context by
default, there are times when an application will want and need to display content from the web free
from these restrictions. In most cases, this is done with an IFRAME that has a source of http:// or
https://. When the host sees an IFRAME creating using http, it will be displayed in a web execution
context. The web execution context has the following characteristics:

• It has no access to the Windows Runtime.

• As with any IFRAME it has no access to the parent DOM.

• Any XHR operations are subject to same origin policy.

Functionally any IFRAME running in a web execution context has similar characteristics as an IFRAME
running in a browser. This allows the developer of a WWA to display advertising or other mashup
content from remote sites without exposing the application to potentially unsafe content.

3.6.5.3 SPECIAL CASE FOR EXECUTING PACKAGED CONTENT IN A WEB CONTEXT

Elements of Mosh: the developer story Page 41 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Normally the web execution context is used for remote content accessed via the http protocol, but
there may be times when it is appropriate to load content from your local package but force it to be
loaded in a web execution context. This is accomplished by creating an IFRAME that points at source
from your local package by using the ms-wwa-web:// URI scheme.

3.6.5.4 NESTED EXECUTION CONTEXTS

Since IFRAMEs can be nested, it is important to understand the rules for nesting IFRAMEs relative to
their execution context. As noted above, the top level DOM is always loaded in a local execution
context. The following rules apply:

• The top level DOM can include IFRAMEs of any type.

• An IFRAME running in a local context can create a child IFRAME of any type.

• An IFRAME running in a web context can only create other IFRAMEs that will run in a web
execution context. Specifically:

o IFRAMES with a source URI of http://, https://, or ms-wwa-web:// are allowed

o IFRAMES with a source URI of ms-wwa:// are not allowed.

These rules ensure that an IFRAME running in a web execution context cannot gain access to the
Windows runtime simply by creating a child IFRAME that has such permission.

3.6.5.5 COMMUNICATION BETWEEN IFRAMES

All IFRAMEs, regardless of execution context, have limited ability to communicate with or manipulate
any DOM they do not own. WWAs support HTML5 web messaging using postMessage() and
addEventListener(). An application developer could use this mechanism to signal a request from one
IFRAME to execute code in another IFRAME deliberately. This would allow a developer to call a
Windows Runtime API in response to an event that occurred in an IFRAME running with a web execution
context which could not otherwise access the API. The deliberate nature of this action ensures that
untrusted code cannot directly access the Windows Runtime.

3.6.6 WEB NAVIGATION MODEL

WWAs offer a navigation experience that can take the user to pages packaged with the application, to
external sites that are defined as being part of the application, and to third party apps or sites that are
not part of the application. These navigation actions may be initiated by the user or programmatically in
the context of using the application. WWAs support the following URL schemes: “http,” “https,” “ms-
wwa,” “ms-wwa-web,” “data,” “mailto,” and “javascript.”

Elements of Mosh: the developer story Page 42 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The “ms-wwa” scheme replaces “file” as the mechanism for retrieving resources in locally packaged
content. The “ms-wwa-web” scheme also retrieves locally packaged content and runs the specified in
the web compartment.

As the developer, you are responsible for defining the navigation experiences within the application,
such as the navigation structure and navigation controls. You are also responsible for defining the
boundaries of the application; you do so by configuring the ApplicationContentUris element in the
application manifest.

3.6.6.1 DEFINING THE NAVIGATION DOMAIN

The ApplicationContentUris element contains one or more rule entries, each of which contains a match
attribute that specifies a URI match and a type attribute that specifies whether the matched URI should
be included or excluded from the application’s content.

There are several ways to specify a URI match:

• You can specify an exact hostname.
• You can specify a hostname for which a URI with any subdomain of that hostname is included or

excluded.
• You can specify an exact URI.
• You can specify an exact URI that can contain a query property.
• You can specify a partial path and use a wildcard to indicate a particular file extension.

The following example shows application content URIs with three entries.

<ApplicationContentUris>
 <Rule Type=”include” Match=”http://www.example.com/”/>
 <Rule type=”exclude” Match=”http://www.example.com/downloads/”/>
 <Rule Type=”exclude” Match=”*.pdf”/>
</ApplicationContentUris>

The first rule includes all of http://www.example.com; the next rule excludes anything under the
downloads subdirectory of that site; and the third rule excludes any URI that that ends with “.pdf”.

To determine if a URI is in the application context URIs, the WWA host will take the last matching entry
and the URI will be included or excluded based on that entry. For example
‘http://www.example.com/file.pdf’ will be excluded based on the above navigation domain since
although it matches the first include entry it also matches the last exclude entry. If the first and last
entries in the ApplicationContentUris were swapped, then the file.pdf URI would match the include rule
last and so would be included in the application content. If a URI does not match any entry, it is not in
the application content. ApplicationContentUris may contain a maximum of 100 Rule elements.

Elements of Mosh: the developer story Page 43 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Note that the ApplicationContentUris also allow any defined URIs to access the geolocation, media
capture, clipboard, and download of unknown files that are normally present in the browser. The
geolocation and media capture APIs require a corresponding capability in the package manifest, and still
require user consent before they can be invoked. Downloading an unknown file (i.e. a .pdf file that
cannot be handled by the application) will redirect the user to the browser.

3.6.6.2 THE APPLICATION CONTENT URIS AND OTHER URI SCHEMES

The ApplicationContentUris only applies to http and https schemes. You can use the new packaged
content URL scheme (ms-wwa) to refer to any file that is included in the application’s package—it’s
automatically considered a part of the application content.

The JavaScript URI scheme is automatically included in the application’s content. The JavaScript URI
scheme is of the form javascript:code; for example:

javascript:alert(‘hi’)

When a JavaScript URI is navigated to, the contained script in executed the context of the document
that contained the link. Note that that javascript URIs can only be invoked for web content. Locally
packaged content may not use javascript URIs due to common security vulnerabilities associated with
the URI scheme.

All other URL schemes are outside the application content URIs.

URLs are interpreted in the same manner that IE interprets URLs. This is mostly based on the definition
of URI from RFC 3986 but with the addition of support for non-US-ASCII characters everywhere except
the scheme name, and IDN in the hostname. Non-US-ASCII characters are allowed in URLs and will not
be removed, encoded, or changed in any manner, except for IDN. In the hostname of http and https
URLs, non-US-ASCII characters will be normalized according to IDN and must be valid in IDN.

3.6.7 WEB SECURITY, SAME SITE ORIGIN, AND XMLHTTPREQUEST

In the web world, the site of origin (or the origin of a web page) is used to determine the identification
of the web page. The concept is used to protect servers from unauthorized access and to create
documents that access across server boundaries, such as IFrame documents.

We can consider usage of origin in roughly three groups

• Private resources accessed by same-origin web page. Example (1): Outlook web access uses XHR
to bring down a user’s inbox / calendar from an OWA server.

• Public resources accessed by different origin web page. Example (2): Service.weather.com has a
public method that allows any 3rd party web page to get the current weather data.

Elements of Mosh: the developer story Page 44 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• Secure communication between host document and document IFrame. Example (3):
Map.bing.com has “map” mashup contents.

o Variation: Secure communication between documents in different IFrames.

The WWA platform enables extended communication mechanisms, particularly in the local
compartment. The following table describes these mechanisms.

Mashup Method Works with different
site of origin?

Example Comment

XmlHttpRequest Yes in local
compartment, No in
web compartment

 From the local compartment, XHR is
allowed to anywhere. From HTML
documents with a web context, the
same origin policy restriction
applies.

JSON via <script>
tag

Yes Flickr JSON API,
Twitter API

The downside of this is approach is
that it lets the script tag’s target site
run whatever script they like on the
mashup site.

IFrame Yes Facebook Live
Conversation

This is a limited form of mashup
since there is usually only
communication from the hosting
page to the framed page when
creating the frame but no additional
communication.

IFrame + cross Yes Same as the preceding approach,

Elements of Mosh: the developer story Page 45 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

document
messaging

but the script running in the hosted
page and framed page may
communicate if each allows
communication with the other’s site
of origin. Cross document
messaging is available in the WWA
platform.

IFrame + URL
fragment hack

Yes Facebook
Platform JS API

IFrames communicate between the
host and the framed page via the
one thing that’s visible to the host
page and controllable by the framed
page: the fragment of the framed
page’s URL. This is a hack and
doesn’t have the control that cross
doc messaging provides, but still
works in WWAs. The postMessage
method is the preferable approach,
though.

Server side code or
native client side
code (usually
RESTful XML web
API with no cross
origin resource
sharing)

Yes Netflix REST
API,
Flickr REST API,
Facebook User
Data REST API

WinRT networking APIs are available
to facilitate this.

3.6.8 ERROR HANDLING AND DISPLAY

When a navigation error occurs, the WWA Host will display an error page. The host will provide a
generic error page for top level navigation errors, but applications can choose to provide their own. It is
recommended that applications provide a custom html page that can handle errors, in order to give
users a more fluid experience.

The WWA Host will redirect to this page whenever a navigation error occurs, precipitated by one of
these conditions:

• Receipt of an error HTTP status code—the most common being 404 (not found) or 500 (internal
server error)

• Receipt of an error HRESULT when talking to networking layer (WinInet)

Elements of Mosh: the developer story Page 46 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

o Web compartment attempts to navigate to a disallowed page in local package—the web
compartment can only navigate to a local page it has previously visited in this session;
this becomes a standard 404 HTTP status code.

o Web compartment attempts to navigate without Internet capability—navigation must
conform to Application Container restrictions; this becomes a standard 404 HTTP status
code.

o Local compartment attempts to navigate to content outside its navigation domains.
o Use of a non-standard scheme—Only http://, https://, ms-wwa://, and ms-wwa-web://

schemes are allowed

Characteristics of a custom error page provided by the application:

• The page name must be “wwa-error.html”
• The page must be located in the “root” directory of the package

Characteristics of the default error page provided by the host:

• Only loaded when top level navigation error occurs
• For an Iframe error, the host will show a blank page in the absence of “wwa-error.html”
• Has a back and close button.

This error page must determine the reason for the error, and then determine how to handle the error
and return to the previous state or display an appropriate error message to the user. Note that
navigation errors can occur either in the top-level window or in an IFrame. The error page is only
displayed in the frame or window that experienced the error.

The WWA Host makes certain information about the error available to the error page. These are
encoded in the manner described in the HTML4 spec for form submissions encoded as application/x-
www-form-urlencoded documentation. The encoded values include:

• proxyUrl: the URL to resolve the issue for parental controls or a coffee shop or hotel Terms &
Conditions Agreement

• httpStatus: the HTTP status code (if applicable) as a decimal integer

• failureName: the name of the HRESULT of the failure exception from WinInet for the INET_E_
prefix (e.g. AUTHENTICATION_REQUIRED); if the HRESULT is not an INET_E_* failure or if it is
one of the internal IE errors, such as INET_E_RESERVED*, then the string “UNKNOWN,”
concatenated with the hex value of the HRESULT, is returned instead (for example,
UNKNOWN80040005)

• failureUrl: the URL that precipitated the navigation error; the failureUrl appears last on the
query string and will be truncated if the error page URL with this information exceeds the
maximum length for an URL.

Elements of Mosh: the developer story Page 47 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Note: An application may avoid many error conditions by only navigating to content in the local package
or by using the HTML5 Application Cache.

The following example shows a simple error page:

<!DOCTYPE html>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <title>Error</title>
 <link href="css/error.css" rel="stylesheet" type="text/css" />
 <script src="js/jquery-1.4.3.js" type="text/javascript"></script>
 <script src="js/error.js" type="text/javascript"></script>
</head>
<body>
 <h2>Error</h2>
 <div id="content">
 <p>The application failed to navigate.</p>
 <div id="failureName">
 FailureName:

 </div>
 <div id="httpStatus">
 HttpStatus:

 </div>
 <div id="failureUrl">
 FailureUrl:

 </div>
 <div id="proxyUrl">
 ProxyUrl:

 </div>
 </div>
</body>
</html>

References:

1. Status codes and failure HRESULTs on MSDN
2. Design Spec for WWA Navigation – Specifies how each HTTP status code and HRESULT is

handled, in detail
3. Functional Spec for WWA Navigation

3.6.9 FILE DOWNLOADS

Unlike native languages, JavaScript provides no way to directly interact with and manipulate binary data.
Instead of forcing developers to interact with binary data at the byte level, JavaScript developers pass
this data to APIs that can manipulate the data for them.

Elements of Mosh: the developer story Page 48 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

To support binary data manipulation, the web standards defined the blob interface. The blob interface
wraps binary data and provides a way to pass the data around. The blob interface was originally defined
as part of the File API as a way for applications to use images, videos, and audio that may come from
files, but has since been expanded to represent binary data in general. The blob functionality is not
currently present in Microsoft technologies (IE, WebOC, or WWAHost), and is essential to enable high-
powered web applications.

The Windows Runtime projects many data formats into JavaScript that are not directly consumable by
the language. JavaScript developers have no way to use streams, interfaces, or many other data types.
The blob interface solves this problem by wrapping the data and providing an API for accessing it. A web
developer uses blob as the means to transfer data to other applications and system components, and
lets those pieces determine how to use the underlying data represented by the blob. The following list
describes some common uses:

• MoSh contracts. Applications want to be able to share and pass data around (playTo, share, and
so on) and blob will be a part of this process.

• FileAPI. Reading and writing files will generally require converting to and from blob.
• XHR L2. The XMLHttpRequest Level 2 W3C specification defines an API that provides scripted

client functionality for transferring data between a client and a server. The level 2 specification
defines support for binary send and receive using blob.

3.6.9.1 LOADING A BLOB

The following example shows how to use XHR to load a blob image into an image tag.

var xhrRequest;
function readyStateCallback()
{
 if (xhrRequest.readyState == 4 && xhrRequest.status == 200)

Elements of Mosh: the developer story Page 49 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 {
 var blob = reqXML.response;
 var myBlobUrl = window.URL.createObjectURL(blob);
 document.getElementById("myImageTag").src = myBlobUrl;
 }
}

function DownloadBlob()
{
 xhrRequest = new XMLHttpRequest();
 if (xhrRequest)
 {
 xhrRequest.open("GET", "http://myserver/myimage.jpg", true);
 xhrRequest.responseType = "blob";
 xhrRequest.onreadystatechange = readyStateCallback
 xhrRequest.send(null);
 }
}

The next example uses a blob to set an image source.

var myImage = document.getElementById("myImageTag");
myImage.src = window.URL.createObjectURL(myBlob);

3.6.9.2 RETRIEVING ALL FILES IN THE MUSIC LIBRARY, SORTED BY ARTIST, ALBUM, TRACK,
AND WALKING THE LIST

The following example launches a file using a blob.

var library = Windows.Storage.KnownFolders.musicLibrary;
library.getFilesAsync(Windows.Storage.CommonFileQuery.orderByMusicInfo).th
en(function(files) {
 files.forEach(function(file) {
 var urlToFile = window.URL.createObjectURL(file);
 //now we can load this URL into an audio tag
 });
});

3.6.9.3 DOWNLOADING A FILE USING A BLOB

The following example downloads a file using a blob.

var xhrRequest;
function readyStateCallback()
{
 if (xhrRequest.readyState == 4 && xhrRequest.status == 200)

Elements of Mosh: the developer story Page 50 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 {
 var blob = reqXML.response;
 var stream = blob.msRandomAccessStream;//this is a winRT random
 //access stream that can be used to
 //write to a StorageItem stream
 }
}

function DownloadBlob()
{
 xhrRequest = new XMLHttpRequest();
 if (xhrRequest)
 {
 xhrRequest.open("GET", "http://myserver/myfile", true);
 xhrRequest.responseType = "blob";
 xhrRequest.onreadystatechange = readyStateCallback
 xhrRequest.send(null);
 }
}

3.6.9.4 LAUNCHING A FILE USING A BLOB

The following example launches a file using a blob.

function LaunchFileHandler(file)
{
 Windows.UI.Activation.Launcher.LaunchDefaultProgramForFile(file);
}

3.6.9.5 ADDITIONAL EXAMPLES

For addition examples, see the Blob DDI Spec.

3.6.9.6 WORKING WITH STREAMS

In addition to Blobs as noted in the previous section, WWAs will also support the notion of MSStream.
MSStreams are similar to Blobs, but have a few key differences, notably no known size. The advantage
of Streams is that you are able to get them from XHR while the contents are still being downloaded (For
a Blob, you must wait till readyState 4, which means the content is fully downloaded). This is the key
way to load videos via XHR without forcing the user to wait for the entire video to download.

The stream can be downloaded as follows:

var xhrRequest;
function readyStateCallback()
{
 if (xhrRequest.readyState == 3)

Elements of Mosh: the developer story Page 51 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 {
 var MSStream = reqXML.response;
 var UrlToStream = URL.createObjectURL(stream);
 //you can now load the url to this stream into a tag.
 //note: This stream was received in readystate 3, unlike the blob
 //which required readystate 4
 }
}

function GetStream()
{
 xhrRequest = new XMLHttpRequest();
 if (xhrRequest)
 {
 xhrRequest.open("GET", "http://myserver/myfile", true);
 xhrRequest.responseType = "ms-stream";
 xhrRequest.onreadystatechange = readyStateCallback
 xhrRequest.send(null);
 }
}

Additionally, we provide ways to read the streams data as a Blob. This shows the code necessary to
convert an MSStream to a blob by use of the StreamReader. This function assumes that you already
have an MSStream object. The StreamReader is an asynchronous interface, and was designed to give
developers the same coding pattern as the W3C FileReader.

//function which takes an msStream obtained through XHR or window.msObject
function readAsBlob(stream) {

 var reader = new MSStreamReader();

 // Read file into memory
 reader.readAsBlob(stream);

 // Handle progress, success, and errors
 reader.onprogress = updateProgress;
 reader.onload = loaded;
 reader.onerror = errorHandler;
}

function updateProgress(evt) {
 if (evt.lengthComputable) {
 // evt.loaded and evt.total are ProgressEvent properties
 var loaded = (evt.loaded / evt.total);
 if (loaded < 1) {
 // Increase the prog bar length
 // style.width = (loaded * 200) + "px";
 }
 }
}

function loaded(evt) {

Elements of Mosh: the developer story Page 52 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 // Obtain the read file data
 var blob = evt.target.result;
}

function errorHandler(evt) {
 if(evt.target.error.code != 0) {
 // The stream could not be read
 }
}

3.6.10 JAVASCRIPT CHANGES

The following table details the changes that will be occurring to the browser properties that are
accessible by JavaScript code running in the WWAHost:

JavaScript Changes
navigator AppCodeName Return WWAHost/1.0
navigator appMinorVersion Return 0
navigator appName Return WWAHost/1.0
navigator appVersion Return 1
navigator browserLanguage Returns the OS language
navigator userAgent User-Agent: Mozilla/5.0 (compatible; MSIE 9.0; Windows

NT 6.1; Trident/5.0; WWAHost/1.0;)

Additionally, the following set of JavaScript features as found in the browser’s IE10 Standards Mode
have been deprecated within WWAs.

• Conditional compilation. Conditional compilation is a native solution available to only Internet
Explorer which offers web developers a way to find out a number of values specific to the
browser environment. Detailed list of such variables and the usage can be found in MSDN.
These typically are used to detect if the browser being used is Internet Explorer and handle the
behavioral differences of features between browsers. This Microsoft specific extension is not
required in the context of WWAs as they will always be running on same web platform.

• getVarDate(). The getVarDate method is a Microsoft specific extension on the Date object and is
used when code interacts with COM objects, ActiveX objects, or other objects that accept and
return date values in VT_DATE format. This method is primarily is used to expose a JavaScript
date as an OLE date.

• Enumerator(). Enumerator objects provide an alternative mechanism for iterating over the
elements of Array instances and certain host objects that are [Collections]. (e.g. iterating XML
DOM). For all JavaScript array or regular objects, For…In enumeration is the standard way to
enumerate the properties. Enumerating host/external objects that do not support For..In
convention will require the host/external objects to pass serialized JSON strings to JavaScript.

Elements of Mosh: the developer story Page 53 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• VBArray(). VBArrays provide access to Visual Basic safe arrays in JavaScript. VB is not a
supported script language within the WWA Host.

• HTML Wrappers. The String.prototype functions no longer support APIs like
String.prototype.bold() and String.prototype.italics(). All styling should be done via CSS (or
HTML).

3.6.11 OFFLINE EXECUTION

Fully packaged WWAs and those that take advantage of HTML5 App Cache are capable of running while
not connected to the internet.

3.6.12 STATE & SETTINGS

WWAs provide several choices for where and how to save state and settings. These include the
following:

Storage Location Pros Cons
State Manager (WinRT) 1. Accessible from both JavaScript

and native code, including
other WinRT objects

2. Provides structured,
unstructured, and temp state
locations

3. Can participate in Windows
Roaming

1. Not a web standard

Cookies 1. Web standard
2. Travels to web server with

each request
3. Isolated from IE and other

apps’ cookies and only deleted
when expired or when the app
is uninstalled

1. Limited amount of data
storable

Web Storage / DOM Storage 1. Essentially unlimited amount
of data storable, limited only
by performance considerations
since it maps to a single XML
file internally

2. Structured data solution

1. Not fully compliant with
latest standard; only stores
strings (JSON
encode/decode required)

2. No unstructured data

File System (WinRT) 1. Full user file system stores
available

1. Not a web standard
2. No structured data

Elements of Mosh: the developer story Page 54 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

2. Automatic access to
application state locations,
brokered access to user data

3. Remembers permissions
granted by the user

3. No temp file cleanup
4. File parsing is required
5. Binary file writing is limited

Indexed DB 1. Web Standard
2. Structured data solution

1. No unstructured data

Third Party DB (WinRT) 1. Supports full SQL syntax
2. Very familiar (SQL CE, MySQL)

1. Developer must write their
own WinRT wrapper

2. No unstructured data

3.6.12.1 STATE MANAGER OVERVIEW

The State Manager is the recommended means of storing state and settings for MoSh applications.
MoSh applications can use it to save and restore runtime state, user preferences, settings, performance
caches, and other user data. Structured state storage is provided in the form of settings. Unstructured
state is provided in the form of files.

A MoSh data store is always provisioned as follows:

These stores are created when the app is installed and deleted when the app is removed. They are
accessible via the Windows.Storage.ApplicationData.current WinRT class.

3.6.12.2 SETTINGS

The State Manager provides MoSh apps with access to settings in its local and roaming settings
containers through two static properties: Windows.Storage.ApplicationData.current.LocalSettings and
Windows.Storage.ApplicationData.current.RoamingSettings. These properties both have a childrens

The following examples show how to use JavaScript to read, delete, and write State Manager settings:

// SETTING READ: Get value of "window-background-color" roaming setting
var windowBackgroundColor =
 Windows.Storage.ApplicationData.current.RoamingSettings.values.lookup(
 "window-background-color");

// SETTING DELETE: Delete the value of "window-text-font" roaming setting

Elements of Mosh: the developer story Page 55 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Windows.Storage.ApplicationData.current.RoamingSettings.values.remove(
 "window-text-font");

// SETTING READ: Get the value of the "app-launch-count" local setting
var appLaunchCount =
 Windows.Storage.ApplicationData.LocalSettings.values.lookup(
 "app-launch-count");

// SETTING WRITE: Set the value of the "app-launch-count" local setting
Windows.Storage.ApplicationData.LocalSettings.values.insert(
 "app-launch-count", appLaunchCount++);

3.6.12.3 FOLDER & FILES

The State Manger provides MoSh apps with easy access to their local, roaming and temporary data
folders through three static properties: Windows.Storage.ApplicationData.current.LocalFolder,
Windows.Storage.ApplicationData.current.RoamingFolder, and
Windows.Storage.ApplicationData.current.TemporaryFolder. File methods defined by the
Windows.Storage.IStorageItem may be called directly on any of these folders to access the application’s
data files.

The following example shows how to retrieve data from the RoamingFolder.

// FOLDER OPEN: open the roaming folder in the application data store.
var folder = Windows.Storage.ApplicationData.current.RoamingFolder;

// CREATE FILE STREAM: create an sample CSV-format data file in the
temporary folder.
var fileStream = folder.CreateChild("address-
book.xml").GetStream(ReadWrite);
// do something with the XML file stream here…

// CLOSE FILE STREAM:
fileStream.Close();

An application data folder is represented by the Windows.Storage.IStorageFolder interface, a public
MoSh API that can represent a folder or a file. For more information on File Access, please see section
4.15 of this document.

3.6.12.4 CONTAINERS

Within the State Manager APIs, the developer may create containers and nested containers to organize
their files and settings.

Elements of Mosh: the developer story Page 56 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

MoSh app developers may create nested container hierarchies up to 32-levels deep with no restriction
on tree breadth. To create a nested container, call the parent container’s CreateContainer method. To
delete a nested container, call the parent’s DeleteContainer method.

The following example shows how to create and delete containers:

// Get the local root settings container.
var localSettingsContainer = appData.localSettings;

// Create a named container under the root.
var nestedContainer = localSettingsContainer.createContainer("Nested");

// Write a value into the new "Nested" container.
nestedContainer.values.insert("pi", 3.1415926536);

// Delete a subcontainer.
localSettingsContainer.deleteContainer("Nested");

Because setting containers represent a live view of a volatile set of items, they do not support the
deterministic enumeration semantics a developer would expect of an instanced, in-memory collection.
However, it’s sometimes necessary for a client application to take an inventory of a container’s
contents.

This is enabled via the GetItemsView method. This method returns an immutable, in-memory collection
comprising the names and type of the items found in the container at the time of the request. The
following example demonstrates this method.

// ENUMERATE CONTAINER: Obtain an immutable map view of the items
// currently in the container.

var iterator = container.values.first;

// Iterate through the results
while (iterator.hasCurrent)
{
 // Do something with the result. E.g., write it to the document.
 document.writeln(iterator.current.key + ": " + iterator.current.value
+"
");
 iterator.moveNext();
}

3.6.12.5 ATOMS

The State Manager introduces the concept of a setting atom – a new type of composite setting designed
to allow MoSh application developers to save and restore tightly-coupled data sets, such as multiple
properties of a single object, with simple and deterministic concurrent access and roaming. Like setting

Elements of Mosh: the developer story Page 57 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

containers and settings, setting atoms are named, created, and deleted relative to a parent settings
container.

Setting atoms are optimized for tightly-coupled settings groups that contain small amounts of data. They
are expected to perform poorly if used for large, unbounded data sets. Enumerating the settings in an
atom is not supported.

Atoms are created and deleted with the CreateAtom and DeleteAtom methods.

The GetValue, SetValue, and DeleteValue methods defined by Windows.Storage.ApplicationDataAtom
are syntactically identical to their ApplicationDataContainer counterparts. However, setting operations
in an atom are not committed until an application calls the ApplicationDataAtom.Flush method.

The following example creates, sets, and deletes atoms:

// ATOM CREATE: Create "window-position" atom in local settings container.
var atom = localContainer.CreateAtom("window-position",
 Windows.Storage.ApplicationDataCreate_Always);

// ATOM SETTING ACCESS: Write some setting values inside the atom.
atom.setValue("upper", 0);
atom.setValue("left", 0);
atom.setValue("lower", 480);
atom.setValue("right", 640);

// ATOM SETTINGS FLUSH: Commit modifications to the settings group.
atom.flush();

// ATOM DELETE: Delete the atom just to demonstrate how it’s done.
localContainer.deleteAtom("position");

3.6.12.6 ADVANCED OPERATIONS

When an application is updated, its state schema may change and require versioning and upgrade
support. Additionally, an app developer might want to be notified when roaming of state settings
occurs, in order to synchronize with the incoming roaming state and settings data. These topics are
described in the references that follow.

3.6.12.7 REFERENCES

1. State Manager WinRT Projection Spec
2. StateManager Functional Spec
3. StateManager Design Spec

Elements of Mosh: the developer story Page 58 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7 VIEW SIZING AND SCALING

Windows 8 is a reimagining of Windows, from the platform to the user experience. A Windows 8-based
PC is new kind of device, one that scales from small screens on slates through to medium laptop
screens, to large screens on desktops and all-in-ones. A Windows 8-based PC also scales to different
pixel densities. It scales from the pixel density of a slate in the marketplace today through to high-end
HD Slates. It also will scale all the way to the super high pixel density slates of the future; devices where
the size of a pixel is imperceptible to a human eye.

Support for this variety of screens is a unique offering of Windows 8-based PCs. This variety allows for
PC manufactures to differentiate themselves with different and innovative form factor designs. Instead
of only offering one type of screen, consumers can choose the screen size and pixel density that best
suits their preference and usage.

Diversity of choice for PCs drives the broad reach and of the Windows platform with over 1 billion PCs in
the market today. Apps built using HTML5 and JavaScript for Windows have the potential to be run on
any Windows 8 PCs. Support for this breadth and diversity of PCs could potentially add complexity and
concepts to the developer story but Windows 8 has been designed from the ground up to embrace this
diversity while making it simple for app developers to accommodate it.

3.7.1 VIEW SIZING

Support for varying screen sizes from different size and shaped slates, laptops and desktop monitors are
a unique strength of Windows 8. Besides the different form factors, applications may be resized
depending on the orientation of the device or a variety of other factors.

3.7.1.1 WHEN YOUR APPLICATION CAN BE SIZED

Applications are resized in the following circumstances:

1. The display changes. For example, the display is switched to an external monitor or projector.
2. The computer has multiple monitors and the application is moved from one to the other.
3. The app is snapped
4. Another app is snapped, decreasing or increasing the space available for the application.
5. The display is rotated.

The following illustration shows how the preceding factors can change size of an application:

Elements of Mosh: the developer story Page 59 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Applications may also support several specialized layouts:

1. Keyboard shown
2. App-to-app picking
3. Share flyout
4. Connect flyout

Elements of Mosh: the developer story Page 60 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7.1.2 ADAPTIVE LAYOUTS

 One way that Windows 8 helps application developers build for this varying screen sizes is by support in
the application platform for standards-based adaptive layouts. The CSS3 Grid Layout, Flexible Box Layout
and Multi-column Layout helps developers effectively use screen-real estate across a variety of devices
and resolutions. The CSS3 Grid Layout allows a developer to specify the rows and columns of their
layout, each of which can be defined as fixed, flexible or size-to-content. Some of the elements can
remain fixed, while others can grow or shrink as the size of different monitors. The CSS3 Flexible Box
Layout allows a developer to stack their content in one dimension and the control will ensure that
whitespace is distributed equally and predictably. Finally, you can use CSS Multi-column layout to
arrange content into multiple columns on the page. This approach is used by newspapers and magazines
in the print world, which makes text easier to read and track from line to line by organizing the content
into multiple parallel columns. All of the templates have been designed to support different sized
screens by default by using these layout constructs and leveraging controls that fill the screen like the
ListView control.

In an adaptive layout, content and margins reflow to accommodate size changes.

• Provide a full immersive experience.
• Have the potential to scale across all devices and device families.
• Take advantage of screen real estate.
• Can add more complexity to application; all of today’s desktop apps are fluid.

Elements of Mosh: the developer story Page 61 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7.1.3 ADAPTIVE LAYOUT COOKBOOK

There are three considerations to think about when building applications that are adaptive and
maximize the all of the available screen real estate.

3.7.1.3.1 MANAGE THE TOP LEVEL LAYOUT

The first thing to consider is whether the application hides content for certain orientations or
resolutions, or whether it changes its layout significantly for those orientations and resolutions.

In the following example, the application changes its layout when displaying in portrait mode.

Elements of Mosh: the developer story Page 62 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

In the next example, the application hides information when shown in portrait mode.

It’s a good idea to use Media Queries to handle these sorts of layout changes. Media queries let you
query the different dimensions and orientation of available screen real estate. You can use Media Query
to specify the layout that best suits the resolution for a specific form factor.

// CSS File
@media screen and (orientation: portrait)
{
 /* portrait */
}
@media screen and (orientation: landscape)
{
 /* landscape */
}
@media screen and (max-width: 320)

Elements of Mosh: the developer story Page 63 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

{
 /* Docked */
}
@media screen and (min-width: 1024) and (max-width: 1920)
{
 /* Anything that's pretty high res (Slate, Notebook, Desktop) */
}
@media screen and (min-width: 1921)
{
 /* Now we are talking about super high res stuff... */
}

3.7.1.3.2 USE GRID TO DEFINE A FLUID LAYOUT

Within each orientation or resolution range, the exact screen dimensions can vary. Rather than simply
stretching the current layout, the application can take advantage of extra space by displaying additional
data. One way to accomplish this fluid layout is to use the CSS grid and to use “fractional units” (fr) to
identify which portion of the application should distribute available space. The CSS grid also enables you
distribute content across multiple rows and columns.

By default, Visual Studio and Expression Blend for HTML come with default templates that are built for
fluid layout in mind. Here is some HTML to get you started if you do not have access to the templates:

<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <meta http-equiv="X-UA-Compatible" content="IE=edge" />
 <title>Layout Testing</title>
 <style type="text/css">
 body, html, .grid { height: 100%; margin:0px; }

Elements of Mosh: the developer story Page 64 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 .grid
 {
 display: -ms-grid;
 -ms-grid-columns: 120px 1fr;
 -ms-grid-rows: 100px 1fr 60px;
 }
 .title
 {
 -ms-grid-column: 2;
 -ms-grid-row: 1;
 }
 .content
 {
 -ms-grid-column: 2;
 -ms-grid-row: 2;
 }
 </style>
</head>
<body>
 <div class="grid">
 <div class="title">
 </div>
 <div class="content">
 </div>
 </div>
</body>
</html>

3.7.1.3.3 MANAGE SPACING WITHIN YOUR CELLS

You should use the right “fluid aware” elements to manage the available space inside the individual cells
of your grid. For example, the Flexbox and the MoCo will automatically arrange and distribute more
content.

3.7.1.3.4 RECOMMENDATIONS

• DO use media queries to identify the different resolutions that your layout will be specifically
targeting.

• DO use layout features that adapt to different display sizes.

o Consider using CSS Grid as the base layout to define your application regions

o Consider using CSS Flexbox to manage space within the grid (aka cells)

• DO use built-in controls that are designed for fluid layout and will intrinsically take advantage of
any extra screen real estate, such as MoCo.

• CONSIDER using CSS to style your controls and page as much as possible—use gradients,
rounded corners, and so on.

Elements of Mosh: the developer story Page 65 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• CONSIDER using vector based UI (such as SVG, XAML) for app resources if rendering
performance is acceptable.

3.7.1.4 SCALE TO FIT APPS

Some apps, particularly games and game-like rendered UI may not be able to easily take advantage of
more space with higher screen resolutions. For these apps we've created a template that allows you to
"scale to fit" a layout for an app that was designed for 1366x768. This isn't ideal for all UI because it
makes things physically big on desktop monitors but it does allow for these types of UI to still be
immersive on different screens without significant work from the developer.

In a scale to fit layout, content and margins remain fixed and are stretched to fit the size and aspect
ratio of the screen.

• Provide a quick and easy layout for porting existing web functionality.
• Preserve layout and aspect ratio.
• Can be targeted to a specific form factor.
• Offer letterboxing and image stretching.

3.7.1.4.1 SPECIFY A SCALE TO FIT VIEW

Elements of Mosh: the developer story Page 66 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The framework can automatically scale the view size to the available area of the display device. If the
aspect ratio does not match, letterboxing will occur. See the following figure for an illustration of how
this scaling might appear:

To specify the fixed amount of space to scale your application to fit to, use the Corsica WinJS.UI.ViewBox
control which will scale the application to fit the specified dimensions of the content.

<!DOCTYPE html>
<html>
 <head>
 .application {
 width: 1024px;
 height: 768px;
 }
 </head>
 <body>
 <div class="application" data-win-control="WinJS.UI.ViewBox">
 // App layout goes here
 </div>
 </body>
</html>

Specify multiple scale to fit views:

Elements of Mosh: the developer story Page 67 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

<!DOCTYPE html>
<html>
 <head>
 .application {
 width: 1366px;
 height: 768px;
 }

 @media screen and (-ms-view-state: snapped) {
 .application {
 width: 320px;
 height: 768px;
 }
 }

 @media screen and (-ms-view-state: full-screen) {
 .application {
 width: 1366 px;
 height: 768px;
 } }

 @media screen and (-ms-view-state: fill) {
 .application {
 width: 1024px;
 height: 768px;
 } }

 @media screen and (-ms-view-state: portrait) {
 .application {
 width: 768px;
 height: 1366px;
 }
 }
 </head>
 <body>
 <div class="application" data-win-control="WinJS.UI.ViewBox">
 // App layout goes here
 </div>
 </body>
</html>

3.7.1.5 FIXED APPLICATION ASSETS

Developers should ensure to provide images that can be stretched with their layout. Ideally, you should
use scalable vector graphics (SVG) and avoid bitmap assets. If bitmap assets are required, ensure that
images are at least twice (140%) the size of assets that are required at for the target device. This
ensures that images can be scaled to a variety of resolutions without getting blurry. (Scaling large
images down yields much better results than scaling smaller images up.)

Elements of Mosh: the developer story Page 68 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7.1.6 SIZING EVENTS

Notification Scenario User Action Event name

Docked in MoBar Open switch menu, pin app
to bar, untethering action Windows.UI.Immersive.Application.Docked

Undocked from MoBar
Open switch menu, unpin
app to bar. Apps may also
undock programmatically.

Windows.UI.Immersive.Application.Undocked

MoBar shown Show bar OnResize
MoBar hidden User hide bar OnResize

Rotation If accelerometer present
and user rotates, button? Windows.UI.Immersive.Rotation

Soft-keyboard shown User puts focus in a text
field Windows.UI.Immersive.InputPane.Shown

Soft-keyboard hidden Focus leaves a text field Windows.UI.Immersive.InputPane.Hidden
Charm bar shown User swipe None

Scale Factor changed
User projects, changes
monitor or chooses app
setting

OnResize

3.7.1.7 HANDLING PORTRAIT AND ROTATION

Elements of Mosh: the developer story Page 69 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7.1.7.1 ROTATION OVERVIEW

Running Windows on a slate and convertible form factors will become increasingly common with the
release of Windows 8. These form factors make the user’s experience more personal and enjoyable
because they are held in the user’s hands and can be interacted with touch. Users will be able to rotate
these devices easily, changing between landscape and portrait orientations. Switching between these
two orientations lets the user choose a layout that best fits their task or posture. Users will expect
application layouts that support the portrait orientation from the applications that run on slates. It is
crucial that the portrait layout of your application be designed intentionally to fit the needs of your
users even if you decide not to support portrait orientation.

Windows portrait point of view

• All applications must support a landscape view and may optionally support portrait for devices
that support it.

• Portrait will be used but it won’t be as common as landscape.
• Be intentional about your portrait view, even if that means you disable it.

Benefits of supporting portrait orientation

Encouraging ergonomic and comfortable posture
People manipulate objects for personal comfort based on their level of fatigue, their eye sight, available
light and many other factors. The ability to rotate a device to portrait adds to this human-interactivity
for slates in Windows 8. Supporting a portrait layout for your application on Windows 8 will allow a user
to rotate the device based upon the constraints of her surroundings, her posture, and other factors.

Providing a view optimized for vertical tasks
If a task makes use of vertical content, a well-designed portrait layout may be the ideal view. Some tasks
that involve vertical content include: reading (e.g. books, webpages, PDFs, email), scrolling long, vertical
lists (e.g. scanning an email inbox), or viewing vertically-oriented media (e.g. portrait photographs).

Elements of Mosh: the developer story Page 70 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Challenges of supporting portrait orientation

Devices that don’t support changing orientation
Consider the devices your application will run on when deciding if you should support portrait
orientation. Windows 8 is designed for many devices that cannot change orientation, such as laptops,
desktops, family hubs, and others. You may support portrait, but many devices will only see your
landscape view.

Windows 8 will run on many devices that don’t support portrait

How would the use of widescreen impact your portrait layout?
Because Windows 8 is designed and optimized for widescreen monitors in landscape orientation,
consider how your portrait layout could be adjusted if your application were run on a widescreen
monitor in portrait orientation. Your available horizontal space will be severely limited.

Does your application have UI elements that can’t be moved or modified to fit a portrait layout?
Consider how your portrait layout should present UI elements that cannot be reflowed when changing
orientation; some options include (but are not exclusive to) resizing and cropping the element to fit.
User-customized UI elements, images, and videos are all examples of elements that cannot be reflowed
for portrait layout. User specified UI elements should remain exactly where the user placed them, and
the aspect ratios of images or videos could be too wide for portrait orientation (especially if the image
or video is widescreen).

3.7.1.7.2 PORTRAIT GUIDELINES

Elements of Mosh: the developer story Page 71 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Use the following guidance to help you consider how and when that portrait layout can be used in your
application.

Design for landscape orientation first

Your application or feature must support landscape orientation. Windows 8 is optimized for landscape
orientation; the best user interface designs should target landscape-based layouts. Design a layout for
portrait orientation as a secondary layout to for your application. All applications must support a
landscape view they may support portrait but only if the hardware supports it.

Support portrait orientation if the experience of you user in portrait can be as good or better than
their experience in landscape

The portrait view must add value to the experience of your user. Give your user a reason to thank you
for supporting portrait orientation.

Do not support portrait orientation if the experience of your user is worse in portrait than it is in
landscape

Chose to lock your orientation to landscape instead of showing an unsatisfactory or incomplete view
with portrait orientation. Ensure that you can be proud of the look, feel, and functionality of your
portrait view. Supporting portrait orientation but showing significant letterboxing, cropping, and
squishing your UI could make your UI ugly and unusable.

Preserve the current application context when orientation changes

User context is not lost or changed by rotating the device. App state is maintained, entered text is
preserved, and selection persists.

Your portrait view should be consistent with your landscape view

The users experience in portrait view should be similar to their experience in landscape view. To ensure
the user’s experience is consistent, functionality and visual elements should be the same in both portrait
and landscape (wherever possible). Portrait view should not contain features that are not available in
landscape view or “delighters”.

Your portrait and landscape layouts should be optimized for their respective orientations, but they
should also look related to one another. Your portrait layout should be a version of your landscape view
that has been optimized and refined for portrait orientation,
If your portrait view is too cluttered and busy, try to reduce clutter by removing, grouping, or isolating
user interface elements on the application page. If, for example, Your application uses a pane to display
content in landscape, it may be appropriate to isolate the content in the pane as a popup in portrait
view.

Elements of Mosh: the developer story Page 72 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

When considering the layout of your portrait view it should be most related to your 4:3 filled landscape
view.

Applications should maintain the same overall layout and context between portrait and landscape. It is
ok to hide parts of your landscape layout in portrait to focus on the task. In this case, Mail hides its list
view but the application still works the same way and context is preserved.

Landscape and portrait views fill the screen

Fill the available screen real estate with content. Where possible, reflow or resize content to avoid
leaving blank margins.

In this example the picker reflows to fill the screen. Where possible relayout your content to fit the screen
avoiding blank spaces.

Elements of Mosh: the developer story Page 73 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Portrait-centric games

If the focus of your application is the portrait layout, you may default your view to portrait. You must
still provide a layout for landscape orientation for devices that do not support orientation. In the
absence of a better solution for a portrait-focused application, you may use letterboxing to make your
application viewable in landscape orientation for desktops and laptops. Doodlejump is a contemporary
example for a portrait-centric app. Most applications should be landscape centric.

Even portrait-centric games must support landscape for desktop monitors and laptops that don’t support
portrait. In cases where content can’t reflow show letterboxing.

Orientation independent games

If your application is orientation independent lock the view to the landscape orientation. This will ensure
that system UI and elements are shown in predictable places. Labyrinth is a contemporary example for
an orientation independent app.

Set your preferred orientation to landscape if you are an orientation independent game to ensure that
system chrome shows in a consistent location.

Rotation animations

Elements of Mosh: the developer story Page 74 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The system provides a rotation animation. Do not attempt to override or create a custom review
animation on rotation as it will conflict with the system animation. Locking the system orientation while
still rotating the view will yield unexpected results to the user as the edges will not behave predictably.

3.7.1.7.3 IMPLEMENTATION GUIDANCE

Setting initial orientation preference

In the application manifest developers can specify the initial orientation of their application to ensure
that the Splash Screen and other system elements are displayed in the right orientation when the
application is launched.

// package.appmanifest
<VisualElements InitialRotationPreference="landscape">
</VisualElements>

Setting application orientation preference

Developers can set an application orientation preference at run-time which will set the orientation of
the application.

function onLoad() {

 //instantiate the orientation manager object
 var orientation = new Windows.UI.Immersive.DisplayOrientation();

 //read the state
 var state = orientation.autoRotationState;

 //read the orientation capabilities
 var capabilities = orientation.orientationCapabilities

 //set the orientation preference
 capabilities.orientation = "Portrait";
 capabilities.flipEnabled = true;
 orientation.orientationCapabilities = capabilities;
}

Responding to orientation changes

Developers can respond with javascript to rotation change events.

function onLoad() {
 var dDispProp = Windows.Graphics.Display.DisplayProperties;
 dDispProp.addEventListener("orientationchanged",
 onDisplayPropertiesEvent, false);
}

Elements of Mosh: the developer story Page 75 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

// Handle Orientation change
function onDisplayPropertiesEvent ()
{
 var oOrientation =
Windows.Graphics.Display.DisplayProperties.currentOrientation;
}

// When app closes, un-register for Orientation change event
function onClose()
{
 var dDispProp = Windows.Graphics.Display.DisplayProperties;
 dDispProp.removeEventListener("orientationchanged",
 onDisplayPropertiesEvent, false);
}

Developers can can also style there application in response to a rotation change event.

// CSS: Hide the first grid column in portrait
@media screen and (-ms-view-state: landscape)
{
 .grid
 {
 -ms-grid-columns: 320px auto;
 }
}

@media screen and (-ms-view-state: portrait)
{
 .grid
 {
 -ms-grid-columns: 0px 768px;
 }
}

3.7.2 VIEW SCALING

The Windows scaling system provides relatively consistent physical sizes for UI elements on the screen
even though pixel density of screens can vary between different hardware. Maintaining physical size is
crucial to ensure touch targets, per the touch interaction guidelines. If the pixel density of a particular
screen is above a defined threshold, the scaling system applies a scale factor to ensure these physical
sizes. There are many system components and frameworks working in concert to ensure that UI scales
consistently and predictably, without significant user or developer consideration. Keeping the following
design considerations in mind will ensure that applications look great regardless of how they are scaled.

Elements of Mosh: the developer story Page 76 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7.2.1 SCALE PERCENTAGES

The system defines pre-defined scale percentages that map to a defined range of pixel densities. The
scale percentage is selected based upon the system's current pixel density.

How Scale Percentages are Chosen:

The system defines the scale percentages and building a proper fixed or fluid layout will make correctly
handle plateaus. The smallest touch target size defines when to switch scale PERCENTAGES. The
recommended minimum size is 9mm, but it’s possible to provide acceptable targeting down to 7mm due
to the touch platform targeting.

3.7.2.2 OUR TARGET DEVICE

Our desgined target device is 10.6" @ 1366x768 = 148PPI and we need to ensure all of our UI looks
great on this. This is defined as our 100% scale percentage. The other two percentages make sure that
UI is touchable on machines with higher pixel densities.

Elements of Mosh: the developer story Page 77 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7.2.3 HANDLING SCALING PERCENTAGES

Use adaptive layouts:

Adaptive layouts ensure that UI looks good and is touchable on many different screens. Additionally it
allows for accessibility support, and allows for your application to support various system-level states.
See Adaptive Layout for more detail.

File setup & guidelines:

• All assets should be produced @96dpi
• Use the 20px grid system in your layouts and type sizes that map to it well.

Recommended default type size:

The recommended default type size is 11pt to ensure comfortable reading and reliable localization. 9pt
is the smallest legible size but can be problematic. It should only be considered in non-essential
situations. Use Segoe UI (not Segoe UI Light, Segoe UI Semibold or other new fonts) on type sizes
smaller than 11pt as there is no hinting for these fonts.

3.7.2.4 SCALABLE APPLICATION ASSETS

Applications and their images will be scaled up on higher DPI machines to match the plateau. Images
and other assets should scale without displaying artifacts or blurriness. Ideally, provide vector images.
CSS primitives, SVG, and XAML assets can be scaled without any extra work. When bitmap assets are
required, provided three versions of each asset, one that corresponds to each plateau.

Ensure to specify widths and heights on images loaded by the resource loader in order to allow for a
consistent layout.

Elements of Mosh: the developer story Page 78 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.7.2.4.1 USE THE RESOURCE LOADER

For local and web assets the resource loader retrieves the bitmap asset that corresponds to the current
scale percentage.

This example specifies assets for each plateau with different names, all in the same folder.

foo.scale-100.jpg
foo.scale-140.jpg
foo.scale-180.jpg

Developers may also specify assets for different plateaus in different folders.

…\images\scale-100\foo.jpg
 \scale-140\foo.jpg
 \scale-180\foo.jpg

3.8 RESOURCES AND LOCALIZATION

Windows is used worldwide, on a variety of different machines and form factors. It is vital to design
applications so that resources, such as strings and images, are separated from their code. This lets them
be easily localized, change for different scaling factors and accessibility options and a myriad of other
user and machine contexts.

You should separate resources from code, and use the new resource infrastructure in Windows 8 to
handle the selection of the most appropriate resources to best match a particular user’s runtime
environment. This enables:

• Maintenance of the code separately from the content in the resources.
• Creation of localized and tailored variants of each resource, and the ability to add new variants

later.
• Localization of resource content separately from the code, by means ranging from language and

culture experts to machine translation as appropriate.
• The display of different resources based on different configurations and user settings.

3.8.1 QUICK START

3.8.1.1 LOCALIZATION

1. Copy all strings from code and/or markup into a resource file (ResW or ResJSON), providing
resource comments as necessary.

2. Add resource references in the code and markup to refer to the resource

Elements of Mosh: the developer story Page 79 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3. Isolate localizable resource files (e.g. images containing localizable strings, or that should be
mirrored LTR/RTL) from language-neutral files, placing them in language tag named folders (e.g.
fr-FR/logo.jpg)

4. If localizing HTML, add Res.js to the document and make a call to Win.Resources.processAll() on
DOMContentLoaded

5. Be sure to create a PRI file (resources.pri in the root of the package) using MakePRI.exe

3.8.1.2 SCALE FACTOR

1. Create two copies of each image
2. Original size for a typical 92dpi device
3. 150% the size, (e.g. 100x100px image should also have a 150x150px image version)
4. Name the two images <name>.scale-100.<ext> and <name>.scale-150.<ext> and place them

side by side in the same folder. Where <name>.<ext> is the name of the image as referenced in
code/markup. (e.g. and the package contains logo.scale-100.jpg and
logo.scale-150.jpg.

5. Be sure to create a PRI file (resources.pri in the root of the package) using MakePRI.exe

3.8.2 CREATING RESOURCES

The following sections describe how to localize strings, images, and files.

3.8.2.1 STRINGS

String resources should be stored in separate string tables.

3.8.2.1.1 MICROSOFT APP DEVELOPERS & JUPITER APPLICATIONS

Store strings within a ResW file. A ResW file is simply a .NET ResX file containing only strings.

Note: The following tooling experience may not be available in particular versions of VS or may be
incorrect. Follow the manual file format below to author strings.

1. Right click the Project. Select Add Item > Folder. Create a folder named with the correct
language tag (BCP47).

2. Right click the new folder. Select Add Item > Resources (ResW) to create a resw file named
resources.resw.

3. Use the built in designer to add string resources and comments.

Be sure to name the file resources.resw unless you know how to explicitly refer to resources in other
ResW files (see later sections).

Elements of Mosh: the developer story Page 80 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

For example, the file en-US/resources.resw would be formatted as follows:

<root>
 <data name="String1">
 <value>Hello World</value>
 <comment>A welcome message</comment>
 </data>
 <data …
</root>

3.8.2.1.2 THIRD-PARTY WWA DEVELOPERS & SAMPLE WWA DEVELOPERS

Store strings within a ResJSON file. A ResJSON file is a basic text file containing a JSON (http://json.org)
formatted object.

Note: The following tooling experience may not be available in particular versions of VS or may be
incorrect. Follow the manual file format below to author strings.

1. Right click the Project. Select Add Item > Folder. Create a folder named with the correct
language tag (BCP47).

2. Right click the new folder. Select Add Item > JSON Resource to create a resjson file named
resources.resjson.

Be sure to name the file resources.resjson unless you know how to explicitly refer to resources in other
ResJSON files (see later sections).

For example, the file en-US/resources.resjson would be formatted as follows:

{
 "String1" : "Hello World",
 "_String1.comment" : "A welcome greeting",

 "String2" : "Something else",
 "_String2.comment" : "This is a comment to the localizer"
}

Ignore the deeper nested structure VS auto-generates, create your files like the example above.

3.8.2.2 IMAGES AND FILES

XAML, JPG, PNG, other image formats, CSS, HTML Fragments and any other file types are inherently
resources, which are typically files by themselves and therefore are already separated from the
application code.

Elements of Mosh: the developer story Page 81 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

All file assets should be marked with qualifiers, which specify when they are appropriate for use in the
application UI. This is done by placing them in correctly named folders and/or filenames.

Qualifier Name Value Details
Language Foldername: <Any BCP47 language

tag>
Filename: lang-<Any BCP47
language tag>

Specifies the language of the
resource. Note that filenames
require lang- as a prefix to the
language tag.

Scale* scale-100
scale-150
scale-200

Specifies the scale factor of the
image (typically used for images
when the application is zoomed
or viewed on a higher dpi device.

Contrast contrast-standard
contrast-high
contrast-bl
contrast-wh

Specifies the contrast theme
setting of the system. Standard is
when all high contrast themes
are off. High is set when in any
high contrast mode. Bl
represents when Black
background/white foreground
images are preferred. Wh
represents when white
background/black foreground is
preferred.

Home Region Homeregion-<Region Code>

Any valid iso-3166-1 alpha 2 two-
letter region code, or any valid iso-
3166-1 numeric three-digit
geographic code (identical to the
United Nations Statistic Division
M49 region codes)

Represents the home location of
the user. Typically specified at
Windows installation and
accessible from the Control
Panel. Commonly overridden if
some other data provider is
known.

*Expect upcoming changes to scale factors pre-PDC.

3.8.2.2.1 EXAMPLES

Images/
 Logo.scale-100.png
 Logo.scale-150.png
fr-FR/

Elements of Mosh: the developer story Page 82 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 menu.png
 map.contrast-bl_scale-100.png

The above example specifies images to be used within an application. The map resource likely contains
French text, is useful in a high contrast theme and is sized appropriately for a scale factor of 100%.

Application developers may also choose to use either folder name or file name, or a mix of the two
strategies, to specify assets for a given set of dimensions. For example, the following indicates a file that
is localized for US English, is intended for a black-background high contrast theme, and is sized for the
100% scale factor.

en-US/contrast-bl/logo.scale-100.png

Note: Microsoft Inbox App Developers are impacted by an additional restriction imposed by the build
system. Localizable files must be contained in a folder specifying the language at the root of the project.
For example, myproject/en-US/images/logo.png would be a valid path whereas myproject/images/en-
US/logo.png would not be.

Additional example:

en-US/
 resources.resw
images/
 logo.scale-100.png
 logo.scale-150.png

3.8.3 BUILDING

Every package should contain a special file that is an index of all resources in the application. This file
will be created at build time and is referred to as a Package Resource Index file or PRI. The PRI file is
packaged with the rest of the application and is used to resolve resources at runtime.

• The PRI file is a binary file stored in the root of the package and named resources.pri

PRI files are specifically designed to be the replacement for resources contained within DLLs.

Until VS has integrated directly with MakePRI.exe in PDC-4, application developers will need to generate
a PRI file manually. Each package should contain a single PRI file (resources.pri in the root of the
package).

Note: MakePRI.exe is available in \\winbuilds\release\winmain\XXX\bin\idw\MakePRI.exe

1. Run

Elements of Mosh: the developer story Page 83 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

MakePRI.exe new –pr C:\MyPackage\ -of C:\MyPackage\resources.pri

where -pr (project root) is set to the project’s source location.

2. Add the PRI to the project Add Item > Existing Item.
3. Make the PRI an Item Type of “Content” by right clicking the file in the Solution Explorer >

Properties and choosing “Content” for the Package Action.

The PRI should get added to the package when F5 is run.

Remember to name the PRI file resources.pri and place it in the root of the package.

3.8.4 USING RESOURCES

• The PRI is an index of named resources, which is the abstract notion of a resource (for example,
displayStringForManifest).

• Each named resource has one or more resource candidates, where a candidate is the concrete
value for the resource and the conditions for which it is appropriate (for example, “Hello World”
is a concrete value and is useful when the user’s language matches en; “Hola Mundo” is another
concrete value for the same item, but it applies to different runtime contexts: it is useful when
the user’s language matches es).

• For Windows 8, instance values are either string resources themselves or file paths that
reference a loose file resource.

• Each resource candidate is stored with what are known as qualifiers. Qualifiers describe when a
resource candidate is appropriate for use (what the scale factor should be, the language the
string is in, etc).

3.8.4.1 HTML

Referring to resources in HTML markup is similar to Corsica JS Toolkit’s data-binding for HTML. HTML
elements should have an additional data-win-res attribute specifying the properties of the element and
the names of the resource they should be replaced by.

<input type="text" placeholder="Click here" title="Tooltip Info" data-win-
res="placeholder:Placeholder1; title: Title1"/>

 <li data-win-res="innerText:ListElement1">Male
 <li data-win-res="innerText:ListElement2">Female

Where the resource file resources.resjson contains:

Elements of Mosh: the developer story Page 84 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

{
"Placeholder1" : "Click here",
"Title1" : "Tooltip Info",
"ListElement1" : "Male",
"ListElement2" : "Female"
}

In order to process these data-win-res attributes, the document must include a JS toolkit called Res.js,
which exposes a process call. It is recommended that this process call be one of the first calls made after
the DOMContentLoaded event, as it critical to the document’s UI displaying properly.

<script type="text/javascript" src="ms-wwa://Win8UI/Res.js" />

<script type="text/javascript">
 document.addEventListener("DOMContentLoaded", function() {
 Win.Resources.processAll();
 }, false);
</script>

Note: Res.js is available at \\winbuids\release\winmain\XXX\bin\Win8UI\js\res.js

Where possible, bind a resource to the textContent property instead of innerHTML to replace strings
that don’t include their own markup. The textContent property is much faster to replace than
innerHTML.

3.8.4.2 XAML

Not currently available (coming soon).

3.8.4.3 JS, C#, C++

When accessing resources in Js, C# or C++ code instead of using hard-coded text, the
Windows.ApplicationModel.Resources WinRT APIs should be used. So instead of writing the following in
JavaScript:

alert("Hello World");

you should use:

var R = new Windows.ApplicationModel.Resources.ResourceLoader();
alert(R.getString("HelloWorld"));

where HelloWorld is the name of the string “Hello World” in the resource.resw or resource.resjson file.

Elements of Mosh: the developer story Page 85 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

In C#, this would be achieved using:

ResourceLoader R = new
Windows.ApplicationModel.Resources.ResourceLoader();
String Hello = R.GetString("HelloWorld");

3.8.5 HTML FRAGMENT LOADING

When placing resource references in HTML fragments, the data-win-res markup must get processed
before injecting the fragment into the current document. Therefore, it is recommended that the process
call be made in the data-win-fragmentLoad function.

<script type="text/javascript" data-win-fragmentLoad="init" >
 function init(elem){
 Win.Resources.processAll(elem);
 }
</script>

3.8.6 HTML DATA-BINDING AND RESOURCES

When using HTML data-binding and resources, it is important to process resources prior to data-binding.
For example, suppose we have a string

You have {count} messages

As with best localization practices, the string should be kept as a complete sentence in the resource
string and may contain HTML markup for the binding.

<script type="text/javascript">
 document.addEventListener("DOMContentLoaded", function(){
 Win.Resources.processAll();
 Win.Binding.processAll();
}, false);
</script>

…

You have messages

{

Elements of Mosh: the developer story Page 86 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 "messageCount" : "You have <span data-win-bind="innerText:
count"> messages",
 …
}

3.8.7 APPLICATION MANIFEST

Manifest localization is still coming online, until it is ready some strings may not resolve to resources.

All displayable strings and icons in the manifest are localizable. String references can be done by putting
a resource reference in the place of a hardcoded string.

<DisplayName>ms-resource:String1</DisplayName>

For example, the above example refers to a string called “String1” in resources.resjson or
resources.resw.

File references stay the same as they refer to the logical file (logo.jpg) which maps to physical file
resources (logo.scale-1x.jpg)

<VisualElements Logo="logo.jpg" … >

3.8.8 LIBRARIES, FRAMEWORKS AND OTHER COMPONENTS

Applications often take dependencies on or reference framework packages, .Net portable libraries, class
libraries, control libraries, or have multiple components. Resources for each component are separately
managed and accessed.

Programmatically, components can access their own resources with their own ResourceLoader, by
passing the component’s name. The component’s name is the framework’s package identity name, the
class libraries assembly name or the .Net portable library’s simple name.

ResourceLoader R = new
Windows.ApplicationModel.Resources.ResourceLoader("Win8UI");
R.GetString("loadingStr");

HTML references to resources that aren’t the default main application must specify more explicitly the
component’s resource using a resource URI.

<span data-win-res="innerText: ms-
resource://Win8UI/Resources/replyAll">Reply All

Elements of Mosh: the developer story Page 87 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3.8.9 OVERRIDING THE CURRENT CONTEXT

In some particular cases, being explicit about the language, scale or other context qualifier when loading
resources may be helpful. This can be done by overriding a context object and passing that into the
advanced resource loading APIs

var R =
Windows.ApplicationModel.Resources.Core.ResourceManager.current.mainResour
ceMap.getSubtree("Resources");

var context = new
Windows.ApplicationModel.Resources.Core.ResourceContext();
context.language = "fr-FR";
alert(R.getValue("String1", context));

Advanced resource loading APIs are under the Windows.ApplicationModel.Resources.Core namespace,
where the singleton Resource Manager at ResourceManager.Current manages all the various
ResourceMaps for each of the various components (framework dependencies, libraries, etc).

Within a ResourceMap, a hierarchy of file and other resources can be accessed by getting a sub
ResourceMap. To access string resources the sub ResourceMap is the filename of the resource file it was
stored in (i.e. resources for strings within resources.resjson).

3.8.10 USING MULTIPLE RESOURCE FILES

Some applications may want to separate resources into more than just the default (resources.<ext>)
resource file, in order to ease maintenance and provide separation of components. Resource URIs can
be used to access resource files more explicitly.

 User has already been registered

<script>
 var R = new Windows.ApplicationModel.Resources.ResourceLoader();
 alert(R.getString("ms-resource:/Errors/OutOfMemory"));
</script>

<DisplayName>ms-resource:/Manifest/DisplayName</DisplayName>

3.8.11 REFERENCES

1. Application Resource and Localization

4 ELEMENTS OF A MOSH APP

Elements of Mosh: the developer story Page 88 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.1 MODERN ACTIVATION

Modern activation refers to the process of preparing an instance of a Modern Application to presnt to
the user. This is done by using the activation registration information specified in the Package Manifest
for the launch scenario. This registration information can either be specified as an ActivatableClassID or
an HTML page to navigate to. See the Error! Reference source not found. section or the activation
sections that follow for more information about registration.

There are two types of application instances that can be created by the system: Stateful Immersive Apps
and Stateless Hosted Versions of the Apps.

Stateful Immersive Apps have the following characteristics:

• They appear as a Snapped App or full screen in the MoBody.
• They never appear in both of these places at the same time.
• They remember their state when restarted so users feel as though the application never closed.
• They show up in the Switch List.

Stateless Hosted Apps, which are hosted by an Immersive App, have the following characteristics:

• They render their UI within the system flow’s window. For example, the Share Flyout and
various Pickers demonstrate this characteristic.

• They never appear in the Snapped App View—they can’t be docked.
• They share the same data with the Immersive App, such as authenticated state, content stores,

and so on.
• They do not navigate or manipulate the view of the hosting Immersive App.
• They do not change the state of the hosting Immersive App.
• They are used for short, directed tasks.
• Their code is focused solely on the short, directed task.
• They do not show up in the Switch List.

The type of application instance created by the system varies based on the launch scenario the system is
trying to accomplish. The following is the complete list of system launch scenarios and the
accompanying type of application instance that is created.

Launch Scenario Stateful Immersive App Stateless Host App
Tile of Non Running App X
Switch to Non Running App X
Secondary Tile (Content
Tile)

X

Search X

Elements of Mosh: the developer story Page 89 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Share X
Toast X
File Association X
Protocol Handler X
File Picker Extension X
Send X

During activation, if the application isn’t instantly ready the system will display the application’s splash
screen to give the user an indication that the application is loading. Once the application has completed
the activation process, its window will replace the application splash screen.

4.1.1 WWA ACTIVATION

WWA activation refers to the process of invoking a Windows Web Application in the context of one of
the modern activation contracts. A WWA can register for these contracts in its manifest. By doing so, it
asserts that it provides the correct activation behavior for each contract. For example, a WWA which
registers for the File activation contract must, when activated to open a file, open the file it is given as
part of the activation.

WWA activation consists of two distinct steps: launching and activation. The diagrams that follow
illustrate the flow of each step.

4.1.1.1 LAUNCHING A WWA

A WWA undergoes the launch process as part of activation whenever it was previously shut down. A
shutdown could have been caused by PLM, a system shutdown, the app itself, or the user.

Elements of Mosh: the developer story Page 90 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Launch Steps:
1. Modern activation launches a new WWA Host process in the

correct Application Container with the App ID of the application
being launched. A splash screen is shown while the application
is loading.

2. The WWA Host creates the correct type of window for the
contract it is being activated for and navigates to the proper
HTML page. The WWA must declare this ‘StartPage’ in its
package manifest. It can be declared once for all contracts or on
a per-contract basis.

3. The developer can then register for the DomContentLoaded
event. This will be the first event that the developer receives
where they can begin to manipulate the DOM and initialize their
application.

4. The WWA can also register an event listener for the Activated
event.

5. Once the HTML DOM has been fully loaded DomContentLoaded
fires and the WWA’s handler is invoked. Here the WWA can run
any start up code that their app requires that is independent
from the exact activation they are being launched for.

6. At this point the developer may also display their own loading
UI. This UI will be the first thing the user sees after the splash
screen is torn down. Any long running tasks should be done
when this UI is visible instead of being done during
DomContentLoaded or Activated when the splash screen is still
visible.

7. Once the app’s event handler returns and DomContentLoaded
completes the Activation event will be fired to the app.

4.1.1.2 ACTIVATION

Activation can happen as part of the initial launch of the app or when it is already running (aka
Activation will happen during the initial launch of the app following the completion of
DomContentLoaded, but before the onLoad event is fired. It can also occur after the first launch while
the app is already running (aka. reactivation).

1. WWA Host
Process is Launched

4. The WWA
registers for the
Activation event

5.
DomContentLoaded

fires and the app
can run start up

code

3. The WWA
registers for the

DomContentLoaded
Event

2. Host creates the
window and loads
the proper HTML

page.

7.
DomContentLoaded

Completes

6. Display custom
Loading UI

Elements of Mosh: the developer story Page 91 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Activation Steps:
1. The WWA Host checks to see if the current page is the

page registered to handle the activation in the package
manifest. If it is not then the Host will navigate the app to
the start page specified in the manifest automatically.
This page must be a local HTML file that was installed
with the package.

a. The new page is loaded and the Activating flow
repeats allowing the app to handle the Activation
contract on the new page.

2. The Host fires the Activation event to the WWA, invoking
the handler that was registered during the launching step.
If the app was already running this happens immediately.
If the app is being launched this happens once
DomContentLoaded has completed.

3. Within its Activation Handler the WWA can check the
contractId property on the event arguments to determine
which contract it is being activated for. It should then run
its activation code for that contract.

4. The WWA will extract out the contract parameters and
load the appropriate experience. It can also check the
reason property on the event args to see if it should
restore state. If reason is set to ResumeFromTerminated
the app should load any state that it has saved that is
applicable to the content being loaded.

5. Once the WWA has returned from their Activation event
handler, the WWA Host will continue execution of the
app. If activation was part of a launch, the splash screen
is hidden and the onLoad event fires. If the app was
already running, execution continues normally.

4.1.1.3 TYPES OF WWA ACTIVATION CONTRACTS

There are two primary types of activation contracts as far as WWAs are concerned. The first are single
window activation contracts. The second are multi-window activation contracts.

4.1.1.3.1 SINGLE WINDOW CONTRACTS (STATEFUL IMMERSIVE APPS)

Some examples of single window contracts are Tiles, Search, and File Associations. These contracts
require the WWA to fulfill the contract in its main window. This means that all activations of this type
are sent to a single window. There is no concept of multiple main windows in a WWA.

5. The WWA returns
from Activation

4. The WWA handles
the current

Activation contract

2. The Host fires the
Activation event to

the WWA

1. Can the page
handle the
activation?

1a. The Host
navigates the WWA
to the proper HTML

page

No

Yes

3. The WWA checks
the •• • •• •••• •
property to

determine the type
of activation

Elements of Mosh: the developer story Page 92 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

To handle Single Window activations, WWAs should:

• Declare a single HTML page in their manifest that can handle all the main window activation
contracts that it registers for.

• Ensure that their activation handler can accept activations for all contracts that the app is
registered for at any time while the app is running.

• Preserve the user’s current state when the app is shut down and restore that state when the
application is launched.

• Preserve any important user data when they switch to a new activation context. This might
mean showing the new activation context within the existing view, creating a tabbed view, or
temporarily saving the user’s data.

4.1.1.3.2 MULTI-WINDOW CONTRACTS (STATELESS HOSTED APPS)

Two examples of multi-window contracts are App-to-App Picking and Share. These contracts specify that
the WWA must fulfill the contract in a new, temporary window. This means that only one activation is
sent to the application when it is invoked for these contracts. Each multi-window activation creates a
new window, loads a new HTML page, and fires a new Activation event to that page.

To handle a multi-window contract, a WWA should:

1. Declare an HTML page in their manifest that is specialized to handle the contract the app is
registering for.

2. Structure the activation handler to only handle a single type of contract. This handler will only
be called once in the lifetime of the app. Reactivations are not possible.

3. Avoid restoring/saving state. These types of activations are meant for temporary flows. If the
user dismisses the flow they are explicitly saying they are done with it and therefore the state of
the flow should never be brought back.

4.1.1.4 WINDOWS.UI.WEBUI.WEBUIAPPLICATION API DETAILS
Windows.UI.WebUI.WebUIApplication API
Event Description
Activated Occurs whenever the WWA is activated by the system. It is always raised on first

launch and can occur while the app is running in single window scenarios. It has the
following parameters:

• eventArgs: An object that contains the parameters being passed to the WWA
by the caller. Every contract defines its own unique eventArgs object. Please
see the sections related to the specific activation contracts for more details on
their eventArgs objects.

Elements of Mosh: the developer story Page 93 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.1.1.5 SAMPLE JAVASCRIPT CODE

This example shows how single window tile, search, and file contracts can be handled on a single page.

<!-- Index.html -->

<script type="text/javascript">

function DOMContentLoadedHandler()
{
 // Logic for main window launches
 // Load State
 // Build basic chrome
 // Show custom Loading UI if necessary
}

document.addEventListener("DOMContentLoaded", DOMContentLoadedHandler,
false);

function activatedHandler(eventArgs)
{
 //display custom loading screen that will show once the splash screen
is torn down

 switch (eventArgs.contractId)
 {
 case "Windows.Launch":
 var tileArguments = eventArgs.token;
 //use the tile parameters to set up the page
 break;
 case "Windows.File":
 var filelist = eventArgs.files;
 //open the file/s in fileList and setup the page to view them
 break;
 case "Windows.Search":
 //initialize the search object and set up the page for search
 break;
 }
}

Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
activatedHandler, false);

</script>

This example shows how a multi-window activation for sharing can be handled on a separate HTML
page.

<!-- Share.html -->
<script type="text/javascript">

Elements of Mosh: the developer story Page 94 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

function DOMContentLoadedHandler()
{
 // Logic for Sharing launches
 // Load Sharing chrome
}

document.addEventListener("DOMContentLoaded", DOMContentLoadedHandler,
false);

function activatedHandler(eventArgs)
{
 // display custom loading screen that will show once the splash screen
is torn down

 if (eventArgs.contractId == "Windows.ShareTarget")
 {
 //set up the page to share the data
 var sharedDataPackage =
eventArgs.shareTargetActivationContext.data;
 }
}

Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
activatedHandler, false);

</script>

4.1.1.6 REFERENCES

1. WWA Activation Functional Spec
2. WWA Activation Dec Spec
3. WWA Activation API Doc
4. WWA Activation Samples

4.1.2 WINRT UI ACTIVATION

4.1.2.1 OVERVIEW OF WINRT UI ACTIVATION

WinRT UI apps are compiled as unique executable files. These executable files are packaged (along with
other assets) into AppX packages. WinRT UI apps register for contracts by declaring WinRT components
that are implemented in their exe server via the Application Manifest. When a WinRT UI executable
process is started through activation, the app code in the executable calls into the WinRT UI Runtime
and delegates the work of activation to WinRT UI Runtime code.

When the activation call occurs, the CoreApplication is spun up , unless already running, and based on a
set of heuristic either creates a new thread and new Window corresponding to that thread or re-uses an
existing thread & Window. Based on the type of activation, the CoreApplication then forwards a call to

Elements of Mosh: the developer story Page 95 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

the WinRT UI Application Object. This activation calls a method in the WinRT UI application user code
that corresponds to the particular type of activation for a given contract. The app is responsible for
handling the contract ID/object, creating a visual tree, and assigning this visual tree to the Content
property of the Window. The WinRT UI Runtime parsers the XAML for the tree and renders the UI to the
screen.

4.1.2.2 SEQUENCE

This is the basic sequence for WinRT UI app activation when clicking on a tile:

1. The OS (shell component) handles a tile click. The tile has an associated a pair of values, appId
and contractID. The shell looks up the appID, contractID pair from a catalog and resolves it to a
WinRT ACID. This is the app's ACID mentioned in the preceding section.

2. The shell calls ActivateInstance for the ACID. As explained previously, the app's executable file is
registered with WinRT as an out-of-process server for the ACID. WinRT creates a new process
by calling CreateProcess for the app's executable file.

3. The app's executable file starts and calls into the WinRT UI Runtime to register its ACID. WinRT
UI performs the out-of-process WinRT server work of registering the app's ACID.

4. At this point the application’s Winmain function is invoked and Run is called on the WinRT UI
Application Object. This in turn invokes the CoreApplication object, which
RegistersForActivationFactory an internal class that implements IActivatableApplication. The
CoreApplication object is responsible for waiting on the Shell to return that particular class an
invoke the Activate method.

5. The Shell calls IActivatableApplication::Activate on the CoreApplication’s class. The
CoreApplication implementation first determins if a new thread and Window need to be created
based on the application, then follow the correct semantics determined by the contract
mechanics. Based on this, the CoreApplication creates a WinRT UI ViewProvider which is the
communication mechanism between the CoreApplication object and WinRT UI.

6. CoreApplication invokes Activate on the ViewProvider which in turn calls a method on the
Application object in user code corresponding to the particular activation contract.

7. The user’s code implements an overridable method in App.xaml.cs and determines which UI to
display. This typically involves creating a UserControl and assigning that UI to the Content
property of the Window.

4.1.2.3 WINDOW MANAGEMENT

As with WWAs, WinRT UI represents single window contracts as well as multiple window contracts.

4.1.2.3.1 SINGLE WINDOW CONTRACTS

Elements of Mosh: the developer story Page 96 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Some examples of single window contracts are Tiles, Search, and File Associations. These contracts
require the application to reuse the existing main window.

To handle Single Window activations, applications should:

• Ensure their application code and manifest opts in to support all the desired contracts
• Set the Content of the Window to the desired UI based on that activation type
• Preserve the user’s current state via the Suspend event when that application receives that

event

4.1.2.3.2 MULTIPLE-WINDOW CONTRACTS

Some examples of multiple window contracts are App2App Picker, Share and Settings. These contracts
require the shell to create a new thread and Window associated with that thread, as well as set the
appropriate Content for that particular Window.

To handle Single Window activations, applications should:

• Ensure their application code and manifest opts in to support all the desired contracts
• Set the Content of the Window to the desired UI based on that activation type
• Preserve the user’s current state via the Suspend event when that application receives that

event

4.1.2.4 WINRT UI API FOR ACTIVATION

Activation requires the application author to use the IApplication and IWindow interfaces to handle
activation and set Content to the given Window.

public class Application
{
 // Events
 public event EventHandler Exiting;
 public event EventHandler Resuming;
 public event EventHandler Suspending;
 public event UnhandledErrorEventHandler UnhandledError;

 // Methods
 public void Exit();
 public static void LoadComponent([In] object component, [In] string
resourceLocator);
 protected virtual void OnActivated(IActivatedEventArgs args);
 protected virtual void OnFileActivated(FileActivatedEventArgs args);
 protected virtual void
OnFilePickerActivated(FilePickerActivatedEventArgs args);
 protected virtual void OnInitialize();
 protected virtual void OnLaunched([In] LaunchActivatedEventArgs args);

Elements of Mosh: the developer story Page 97 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 protected virtual void OnSearchActivated([In] SearchActivatedEventArgs
args);
 protected virtual void OnSharingTargetActivated(
ShareTargetActivatedEventArgs args);
 public void Run();

 // Properties
 public static Application Current
 public ResourceDictionary Resources
}

Much of the tooling associated with WinRT UI will create all the template and generated code needed to
make any new project activatable for the OnLaunched contract. An app author can opt in to other
contracts and activation points as desired via the tool. There are a set of strongly typed Activation
methods that the app can override or a loosely typed onActivated method which is the “catch-all”. If you
override a strongly typed method, you must mark the args.Handled property as true or the onActivated
method will still fire. All activations will always fire the onActivated method (unless one of the strongly
methods are marked handled).

4.1.2.5 REFERENCES

1. WinRT UI Activation Spec

4.2 TILES

Tiles are the representation of an application in the Start Menu and the primary way that users launch
their applications. Tiles can have the following functionality and behavior:

1. Can display new, relevant, and tailored application content to the user through notifications,
which allows the user to see at a glance what’s new in their world.

2. Play an integral role in the Start Menu to make Windows feel alive and connected
3. Bring new information that users care about to the top level so they see what’s new in their

applications without going to each application to seek for it.
4. Are not only how modern apps represent themselves, but also present themselves to users in a

way that is engaging and personal to users and incent them to launch the app.

4.2.1 TILE SIZES AND ANATOMY

There are two tile sizes: square(1x1) and wide(2x1).

4.2.1.1 SQUARE TILE

The square tile is the smaller of the two tile sizes and it can contain application branding (either an
application icon or name) – as well as full bleed images and potential notification badges (discussed

Elements of Mosh: the developer story Page 98 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

below). Because a square tile contains only basic information, only a limited number of templates are
available for updating them.

Square tile size

4.2.1.2 WIDE TILE

This tile size can contain any of the content of a square tile plus richer and more detailed content as
well. A broad choice of layout templates is available at this size, to allow the developers to present the
rich notifications to the user. If the application wants to use the wide tile, then they must also provide
the corresponding square tile as the user can choose to shrink the tile down to the square size to
personalize their Start Menu.

Wide tile size

4.2.2 DEFAULT TILES

Default Tiles are the static tiles that included with the application package. If an application doesn’t
send notifications to their tile, then the default tile is the only tile that is displayed to the user. Even if
an application provides a live tile, default tiles are the first thing to be displayed to the user before the
tile starts receiving live notifications. It is also used as a fallback for when there are no notifications to
be displayed on the tile in cases where the user is offline or other notifications have expired.

Tile UI:

Default tiles are essentially a full bleed image the size of the tile representing the brand/logo of the
application. If the application wants to use a wide tile, then the developer must also provide a square
tile.

Tile Rendering:

Elements of Mosh: the developer story Page 99 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Default tiles are rendered on top of the application color, so if there is any transparency in the default
tile image, the application background shows through. The developer can choose to turn the application
name on/off for the default tile.

4.2.2.1 CREATING A DEFAULT TILE

The default tile is specified in the installation manifest and the manifest editor in Visual Studio should be
used to create the default tile.

4.2.3 TILE NOTIFICATIONS

To create live tiles, developers must choose from a set of pre-defined layouts from the template catalog.
Using templates allows tiles to deliver personalized content to the user easily by simply data binding to
template fields.

There are two types of templates in the catalog: Static and peek templates

1. Static templates have a single frame i.e. one tile’s worth of content and so the entire static
template is displayed on the screen at the same time.

2. Peek templates have multiple frames i.e. more than a tile’s worth of content and animate
between the different frames at Windows defined intervals. Peek templates can start animating
from any of the frames.

Tile notifications specify a template and the images and text which should be inserted into the template.
Only Windows provided templates can be used for tile notifications. Users are able to resize tiles to
their liking between square and wide sizes. Applications cannot control what size their tile is. Both
square and wide tiles can be updated with tile notifications, but the templates are different.
Applications that want to use wide templates MUST include a wide logo in the installation manifest. If
an application uses a wide logo, it is STRONGLY RECOMMENDED to send wide templates in notifications.
Applications that send tile notifications with wide templates are STRONGLY RECOMMENDED to also
include a template for the square size in the same payload since users can resize the tile at any time.
This is accomplished by simply specifying two binding elements in the notification, one with a square
template and one with a wide template. A tile that is been resized by the user from the wide size to the

Elements of Mosh: the developer story Page 100 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

square size which receives a notification without a square template specified will instead show the
default square tile specified in the manifest.

Logos and App Names in Tile Notifications:

Applications can specify if their logo or application name should be displayed on a per notification basis.
Note – the logo is specified in the installation manifest. It is recommended that applications choose one
and stick with it for visual consistency and so users can easily identify applications. Templates will
default to showing the application logo unless specified otherwise in the Tile Notification.

Sending Tile Notifications:

Applications can update their tiles with notifications in one of two ways: using the local WinRT APIs
when their application is running or using Push Notifications to send them from their web server.

Cycling Tile Notifications:

Applications can opt-in for Windows to cycle notifications on the tile. Windows will save up to five
notifications if this setting is enabled and automatically cycle between them. Notifications will be saved
in a FIFO queue according to arrival time. The display order and time for notifications is random and
cannot be controlled by applications. Windows uses an algorithm that factors in a variety of variables
including number of tiles that have notifications to cycle and how the user is interacting with Windows.
Unseen notifications are preferred over seen notifications, and a new notification is always displayed
immediately. If a batch of new notifications is delivered to the user, the most recent will be shown
immediately, and the other new ones will automatically cycle.

Offline users: If cycling notifications is enabled, up to five notifications will be saved for offline users and
delivered when the user comes online. These undelivered notifications also conform to the FIFO queue
and replacement logic.

Replacing Tile Notifications:

Notifications can have replacement identifiers which dictate the replacement policy of the saved
notifications. These are application specified strings that can be set on both local and push notifications.
Windows will examine the tag on a new notification and replace any saved notification with the same
tag. Otherwise if there isn’t a saved notification with the same tag, the notifications will be replaced in
FIFO order.

Clearing Tile Notifications:

Tile notifications can be cleared by a running application. The default tile will be displayed after
notifications are cleared. If notification cycling is enabled, all queued notifications will be cleared.

Elements of Mosh: the developer story Page 101 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.2.3.1 TILE NOTIFICATION XML DESCRIPTION

Raising a Tile Notification is remarkably similar to a toast– a developer creates an xml payload based on
a well-known template and passes that to a manager object to display or uses push notifications to send
the XML payload.

The raw XML for a tile notification that updates the tile with the specified template and content:

<?xml version="1.0" encoding="utf-16"?>
<tile>
<visual lang="en-US">
 <binding template="TileWideImageAndText">
 <image id="1" src="package://images\\tile-sdk.png"
alt="package://images/someImage.png"/>
 <text id="1">This tile notification uses local images</text>
 </binding>
 <binding template="TileSquareImage">
 <image id="1" src="package://images\\tile-sdk.png"
alt="package://images/someImage.png"/>
 </binding>
</visual>
</tile>

4.2.3.2 <TILE>

Tile notifications are encapsulated with a root element of tile. Inside the root element, notifications
must specify a visual element. Inside the visual element, notifications can specify a square
template and/or a wide template, denoted by the binding element.

4.2.3.2.1 <VISUAL>

The <visual> tag contains all the visual properties of the tile notification including the template to use,
custom text, custom images and more.

Visual Attributes
Name Description
version
(optional)

 (Example: “1”)

lang
(optional)

This attribute declares the language of the text in this notification. Windows uses this
information to choose the correct font to render the text in. The value must conform to a
BCP-47 tag. If omitted, Windows will instead use the Application specific language setting
specified in the manifest. (Example: “en-us”)

baseUri The baseURI can be used to help save space in the your notification payload for specifying

Elements of Mosh: the developer story Page 102 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Should I include the language attribute when I send notifications:

• If you are writing a non-localized app, Omit the lang attribute when sending notifications.
Windows will use the ASLS language since all apps must specify at least one language

• When writing a localized app:
o Sending localized text in the notification:

§ If this is a cloud notification, Include the lang attribute for the language of the
text. This will require the app to tell the backend what language this user is
running the app in when it registers for channels

§ If this is a local notification, Omit the lang attribute. You have already localized
the text (hopefully using ASLS), so this should just work

o Sending MRT resources in the notification:
§ Omit the lang attribute, Windows will use the ASLS language, which is what

MRT will use to pull the localized text string

4.2.3.2.2 BINDING

A wide and square template binding should be included in one notification. This ensures that the user
will always see the notification if they have the tile sized square or wide.

(optional) images. (Example: http://www.contoso.com/users/871293/notify/89FD3452321D34A/)
branding
(optional)

This attribute sets, at a per notification level, the branding to be shown on the tile.
(Example: “none”)
Options:
none – nothing is shown
name – the short name specified in the manifest is displayed
logo (default value) – the logo specified.

Binding Attributes
Name Description
template
(required)

This attribute declares which template should be used. Implicitly, this defines the number
of valid text and images elements. (Example: “tile.wide.image”)

lang
(optional)

This attribute declares the language of the text in this notification. Windows uses this
information to choose the correct font to render the text in. The value must conform to a
BCP-47 tag. If omitted Windows will instead use the value specified in the visual lang
attribute. (Example: “en-us”)

fallback
(optional)

This attributed declares which template should be used in the case that the template
named under the template attribute is not available on this system in the case that
Microsoft has released new templates that the end user’s PC has not downloaded. If
omitted, the notification will be dropped if the end user’s PC does not have the template
specified in the template attribute. (Example: “tile.wide.image”)

Elements of Mosh: the developer story Page 103 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Binding elements are the way that a developer binds custom image and text to their notification. From
the example, above:

<binding template="TileWideImageAndText">
 <image id="1" src="package://images\\tile-sdk.png" alt="alt text"/>
 <text id="1">This tile notification uses local images</text>
</binding>
<binding template="TileSquareImage">
 <image id="1" src="package://images\\tile-sdk.png" alt="alt text"/>
</binding>

Binding Elements
Text Attributes Description
id (required) This attribute declares which text field the text should be

displayed in.
lang (optional) This attribute declares the language of the text in this

notification. Windows uses this information to choose the correct
font to render the text in. The value must conform to a BCP-47
tag. If omitted Windows will instead use the value specified in
the binding lang attribute. (Example: “en-us”)

Image Attributes Description
id (required) This attribute declares which region the image should be

displayed in.
src (required) The path of the image. Images can be specified as JPG (.jpg

or .jpeg) or PNG (.png). The baseURI can be used in the visual
element to help save space in the your notification payload for
specifying images.

alt (optional) It is recommended that developers set this to specify the
alternate text for the image for accessibility purposes.

Image Protocols Description
Package An image resource included in the package (.appx) file. (Example:

baseUri
(optional)

The baseURI can be used to help save space in the your notification payload for specifying
images. (Example: http://www.contoso.com/users/871293/notify/89FD3452321D34A/)

branding
(optional)

This attribute sets, at a per notification level, the branding to be shown on the tile.
(Example: “none”)
Options:
none – nothing is shown
name – the short name specified in the manifest is displayed
logo (default value) – the logo specified.

Elements of Mosh: the developer story Page 104 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

package://images//welcome.png).
AppData An image resource in the applications AppData directory.

(Example: appdata://images//welcome.png).
http/https An image resource from the cloud. (Example:

http://www.mywebsite.com//images/welcome.png).

4.2.4 SAMPLE JAVASCRIPT CODE

Note: There are currently some known issues where tile updates aren’t being painted on the tiles in the
PDC-4 builds.

Sending a Tile Notification locally:

 var Notifications = Windows.UI.Immersive.Notifications;

 //get a default version of the template
 var tileXml =
Notifications.TileUpdateManager.getTemplateContent(Notifications.TileTempl
ateType.tileWideImageAndText);

 // get the text elements and fill them in
 var tileTextAttributes = tileXml.getElementsByTagName("text");
 tileTextAttributes[0].appendChild(tileXml.createTextNode("This
tile notification uses local images"));

 /*
 You will need to look at the template documentation to know how
many images a particular template has
 - MSDN link
 - you can also use the Advanced Tile SDK Sample to preview all
of the templates
 */

 // get the image elements and fill them in
 var tileImageAttributes = tileXml.getElementsByTagName("image");
 tileImageAttributes[0].setAttribute("src",
"package://images\\tile-sdk.png");

 /*
 Users can resize tiles to square or wide
 Apps can choose to include only square assets (meaning the app's
tile can never be wide), or
 include both wide and square assets (meaning the user can resize
the app's tile to square or wide).
 App's cannot include only wide assets.

 App's that support being wide should include square tile
notifications along with wide notifications since
 users determine the size of the tile.
 */

Elements of Mosh: the developer story Page 105 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 // get a filled in version of the square template by using
getTemplateContent
 var squareTileXml =
Notifications.TileUpdateManager.getTemplateContent(Notifications.TileTempl
ateType.tileSquareImage);
 var squareTileImageAttributes =
squareTileXml.getElementsByTagName("image");
 squareTileImageAttributes[0].setAttribute("src",
"package://images\\tile-sdk.png");

 // include the square template into the notification
 var node =
tileXml.importNode(squareTileXml.getElementsByTagName("binding").item(0),
true);
 tileXml.getElementsByTagName("visual").item(0).appendChild(node);

 //create the notification from the XML
 var tileNotification = new
Notifications.TileNotification(tileXml);

 //send the notification to the app's default tile

Notifications.TileUpdateManager.createTileUpdaterForApplication().update(t
ileNotification);

Specifying branding in your Tile Notification:

 var Notifications = Windows.UI.Immersive.Notifications;
 var tileXml =
Notifications.TileUpdateManager.getTemplateContent(Notifications.TileTempl
ateType.tileWideImageAndText);

 //...
 // set the branding
 var binding = tileXml.getElementsByTagName("binding");
 binding[0].setAttribute("branding", "logo"); // - default, uses the logo
specified in the manifest
 binding[0].setAttribute("branding", "name"); // - use the short name
specified in the manifest
 binding[0].setAttribute("branding", "none"); // - no logo or name

 //...

 var tileNotification = new Notifications.TileNotification(tileXml);

Notifications.TileUpdateManager.createTileUpdaterForApplication().update(t
ileNotification);

Having Notifications Cycled by Windows:

Elements of Mosh: the developer story Page 106 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Windows.UI.Immersive.Notifications.TileUpdateManager.createTileUpdaterForA
pplication().enableNotificationQueue(true);

Replacing a Notification:

// create tileXml using previous examples
var tileNotification = new Notifications.TileNotification(tileXml);

// set the tag of the notification
tileNotification.tag = "msft";

Notifications.TileUpdateManager.createTileUpdaterForApplication().update(t
ileNotification);

Clearing Tile Notifications:

Windows.UI.Immersive.Notifications.TileUpdateManager.createTileUpdaterForA
pplication().clear();

4.2.5 REFERENCES

1. SDK samples
a. JavaScript – \\windesign\modern\tdonahue\SDK samples

2. M3 tile templates
3. wpndisc

4.3 SECONDARY TILES

Secondary Tiles enable users to promote interesting content and deep links from Immersive
Applications onto the Modern Start Menu. A deep link is a reference that can be used to navigate back
to a specific location inside of the pinning application. Secondary Tiles are always associated with their
parent application – they may never be “re-parented” to another application. Pinning Secondary Tiles to
Modern Start Menu provides users with a consistent and efficient way to launch directly into a
frequently used area of their favorite application experiences—either a general sub section of the
parent application containing content which is updated frequently or a deep link to some very specific
area of the application the user is especially interested in keeping track of.

Canonical examples of secondary tile usage include:

- A weather application exposing weather updates for a specific city or region
- A calendar application exposing upcoming events or meetings
- A social application surfacing status and updates of important contacts

Elements of Mosh: the developer story Page 107 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

- An RSS reader allowing pinning of specific feeds or user defined categories

Secondary Tiles enable users to personalize their Modern Start Menu experience with playlists, photo
albums, buddies, and other items they find important.

More generally, any content exposed by an immersive application that will change frequently and which
a user will want to keep an eye on as changes occur is a good candidate for exposing as a potential
Secondary Tile. Once pinned, users may get at-a-glance updates on their tiles and directly launch into
their application to reveal a focused experience centered on the pinned content or contact.

Users always have explicit control of Secondary Tile creation; applications cannot create Secondary Tiles
programmatically. Users also have explicit control over Secondary Tile removal - either through the
Modern Start Menu or within the parent application.

It is easy for developers to leverage the app bar as a surface to pin and unpin content to the Modern
Start Menu. Windows supplies a suggested implementation of the necessary javascript and a button to
match the personality of the app bar. If there is a compelling scenario for not using the app bar, the
projected WinRT function may be called via javascript from app surfaces outside the App Bar.

1. Enabling or disabling the pin button, whether on the app bar or another surface within the
application is left to the application. The following guidance should be adhered to when
choosing to enable the pin button: If the content in focus is pinnable, the app bar should show
and enable the pin button.

2. If the content in focus is already pinned, the app bar should show and enable the pin button so
that the user can use it to unipin the pinned content.

3. If the content in focus is not pinnable, the app bar Pin button should not be shown. If the
application exposes the pin command outside the app bar, the app bar’s Pin button should
either not be shown, or be shown in a disabled state, depending on the UI surface and scenario
where it will appear when it becomes enabled.

Open Issue: As of PDC-4, the app bar is still working to get inbox icons and tasks implemented. Expect
the app bar functionality and corresponding icons for pin/remove to be added at a subsequent date.

Secondary Tiles, like all tiles on the Modern Start Menu, are dynamic outlets that should be frequently
updated with new content. Secondary Tiles may surface notifications and updates using the same
mechanisms as any other tile. To update the tile when the application is not running, the Secondary Tile
must request and open a channel URI with the Microsoft Notification service.

Secondary Tiles should not be used as shortcuts to discrete files that cannot change.

Pinning is a contract between a MoSh application and the Windows pinning infrastructure. The following
is a high-level overview of the pin flow:

Elements of Mosh: the developer story Page 108 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1. The user invokes pin command through the application, which in turn calls the WinRT
ContentTileManager API’s pin method.

2. The application provides the information necessary to create a Secondary Tile.
3. The OS shows a fly-out depicting a preview of the tile and asking the user to confirm the

creation of the Secondary Tile.
4. User clicks “yes” and the Pin Infrastructure creates the Secondary Tile in the Modern Start

Menu.
5. The application opens a channel URI for receiving notifications from the Secondary Tile.

The unpin flow is similar:

1. The user invokes the unpin command through the application, which in turn calls the WinRT pin
API.

2. The application provides the necessary information to remove a Secondary Tile.
3. The OS shows a fly-out with preview of the tile to be removed and asks the user to confirm
4. The user clicks “yes” and the pin infrastructure removes the Secondary Tile from the Modern

Start Menu.

The two key points to note are that it is up to the application to provide the pin infrastructure with the
right information to create or remove a Secondary Tile, and the user is in control of pinning the tile or
dismissing the tile pin fly-out.

The application should use meaningful, recreatable IDs for secondary tiles. This is important for the
following reasons:

1. Secondary Tiles may be re-acquired by users when the application is installed on a second PC.
Using predictable Secondary Tile IDs that are meaningful to an application will help the app
understand what to do with these tiles when they are seen within a fresh installation on a new
PC.

2. At runtime, the application may query if a specific tile exists. By using meaningful IDs for
Secondary tiles, the application may properly ask, “Hey, is this a tile that the user has already
pinned?”

3. The Secondary Tile platform may be asked to return the set of all Secondary Tiles belonging to
an application. Using meaningful IDs for these tiles will help the application reason over the tiles
and perform appropriate actions.

As described in the preceding section, Secondary Tiles are similar to tiles, but there are some
differences. The following list describes some of those similarities:

• Same elements and capabilities as any other tile
o Has a Logo and Small Logo.
o May show notifications and badges.

Elements of Mosh: the developer story Page 109 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

o Uses templates to determine layout.
o Must include a 152x152 Logo
o May optionally use a 312x152 LogoSecondary Tiles may be re-arranged on the Start

Menu
o Secondary Tiles may be moved to the All Programs View or Start
o Secondary Tiles will automatically be deleted when the app is uninstalled.

Secondary Tiles are different from Application Tiles in some noticeable ways:

• Users may delete their Secondary Tiles at any point in time without deleting the parent
application

• The application may initiate the addition of a Secondary Tile at runtime.
o Regular application Tiles are only created at install time.
o The following image depicts an application bar to which a developer could add a pin

button. For more information, please refer to App Bar section of this document.

o A default glyph for pin and remove will be supplied for developers.
o Developers may also add Secondary Tiles through contextual interactions specific to

their app.
§ This is also reflected in the UI above.

• A flyout always prompts the user for confirmation when adding a Secondary Tile which is
different from a regular application tile.

o See below for an example of this flyout in the context of an application

Elements of Mosh: the developer story Page 110 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.3.1 OVERVIEW OF THE SECONDARY TILES CONTRACT—SOURCE APP

The source application handles activation requests from Modern Start Menu for the Secondary Tile.
This is accomplished via the standard activation mechanism used for tiles. For more information on
activation refer to the Modern Activation section. Secondary Tiles may not be activated through any
mechanism except the Modern Start Menu.

The source app is also responsible for:

• Creating an ID for referring to the Secondary Tile.
• Requesting a Channel URI in order to serve notifications to the Secondary Tile.
• Exposing the pin/unpin command appropriately.
• Handling activation requests for the deep links that are exposed by the Secondary Tile.

4.3.2 SAMPLE JAVASCRIPT CODE

4.3.2.1 CREATING A SECONDARY 1X1 TILE

This code demonstrates how to create a 1x1 tile with a different foreground and background color that
the parent application tile.

// Create a 1x1 secondary tile
var logoUri = new Windows.Foundation.Uri("ms-resource://logo.png");
var tile = new Windows.UI.Immersive.SecondaryTile(
 "Microsoft.Sample.StockApp.msft",

Elements of Mosh: the developer story Page 111 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 "MSFT",
 "Stocks - Microsoft",
 "stock=msft,view=detailed",
 Windows.UI.Immersive.TileDisplayAttributes.showName,
 logoUri);

tile.requestCreateAsync().then(
 function() {
 updatePageStatus("Tile created.");
 });

4.3.2.2 CREATING A SECONDARY WIDE TILE

This code demonstrates how to create a wide tile that will be registered to receive notifications.

// Create a wide secondary tile
var logoUri = new Windows.Foundation.Uri("ms-resource://logo.png");
var wideLogoUri = new Windows.Foundation.Uri("ms-
resource://widelogo.png");
var tile = new Windows.UI.Immersive.SecondaryTile(
 "Microsoft.Sample.StockApp.msft",
 "MSFT",
 "Stocks - Microsoft",
 "stock=msft,view=detailed",

Windows.UI.Immersive.TileDisplayAttributes.dynamicTileCapabe,
 logoUri,
 wideLogoUri);

tile.requestCreateAsync().then(
 function() {
 updatePageStatus("Secondary tile created!");
 });

4.3.2.3 RETRIEVING A LIST OF SECONDARY TILES

This code demonstrates how to retrieve a list of secondary tiles for an application in the package.

// Get secondary tile ids for an application
Windows.UI.Immersive.SecondaryTile.findAllAsync().then(
 function(tiles) {
 tiles.forEach(function(tile) {
 doSomething(tile);
 });
 });

4.3.3 REFERENCES

Elements of Mosh: the developer story Page 112 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1. Secondary Tiles API/DDI Doc
2. Secondary Tiles Functional Spec
3. Secondary Tiles Dev Design Spec

4.4 TILE BADGES

Badges show summary information such as the number of new items available to the user in a specific
application context (E.g. Mail app can show 9 to indicate to the user that they have 9 unread emails).
Badges can be displayed on both tile sizes. They can be numeric (0-99) or one of a set of Windows-
provided glyphs e.g. the pause glyph indicates to the user that their music is currently paused in the
music app.

Numeric badge Glyph Badge

4.4.1 BADGE NOTIFICATIONS

Badge notifications specify either a number or Windows provided glyph. This appears as a badge overlay
on the application’s tile.

Displaying a Count:

The raw XML for a badge notification that updates the badge overlay on a tile with the number 20

<?xml version="1.0" encoding="utf-8"?>
<badge value="20"/>

Valid numbers for using a count are (0, 99). Numbers greater than 99 will appear as 99

Displaying a Glyph:

The raw XML for a badge notification that updates the badge overlay on a tile with a glyph

<?xml version="1.0" encoding="utf-8"?>
<badge value="available"/>

Valid glyphs are

Elements of Mosh: the developer story Page 113 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1. None
2. Activity
3. Available
4. Away
5. Busy
6. NewMessage
7. Paused
8. Playing
9. Unavailable
10. Error

Clearing Badge Notifications:

Badge notifications can be cleared by a running application using local WinRT APIs. Note: sending a
badge notification with the value of “0” or “none” will also clear the badge.

4.4.2 SAMPLE JAVASCRIPT CODE

Note: There are currently some known issues where tile badge updates aren’t being painted on the tiles
in the PDC-4 builds.

Sending a badge with a number:

var Notifications = Windows.UI.Immersive.Notifications;
var badgeXml =
Notifications.BadgeUpdateManager.getTemplateContent(Notifications.BadgeTem
plateType.badgeNumber);
var badgeAttributes = badgeXml.getElementsByTagName("badge");
badgeAttributes[0].setAttribute("value", "6");
var badge = new Notifications.BadgeNotification(badgeXml);

Notifications.BadgeUpdateManager.createBadgeUpdaterForApplication().update
(badge);

Sending a badge with a glyph:

var Notifications = Windows.UI.Immersive.Notifications;
var badgeXml =
Notifications.BadgeUpdateManager.getTemplateContent(Notifications.BadgeTem
plateType.badgeGlyph);
var badgeAttributes = badgeXml.getElementsByTagName("badge");
badgeAttributes[0].setAttribute("value", "available");
var badge = new Notifications.BadgeNotification(badgeXml);

Notifications.BadgeUpdateManager.createBadgeUpdaterForApplication().update
(badge);

Elements of Mosh: the developer story Page 114 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Clearing a badge notification:

Windows.UI.Immersive.Notifications.BadgeUpdateManager.createBadgeUpdaterFo
rApplication().clear();

4.4.3 REFERENCES

1. M3 tile templates
2. wpndisc

4.5 LOCK SCREEN NOTIFICATIONS

The lock screen can also display tile and badge notifications an application sends. For this functionality
to be enabled, users must manually allow apps to display tile or badge notifications on the lock screen in
the Lock Screen tab of the Personalization page in Control Panel.

Lock Screen Tile Notifications:

Only the text in the notification will be displayed; the images will not be displayed. Applications must
opt into lock screen notifications in the manifest by choosing either TileText or BadgeAndTileText in the
visual elements.

Lock Screen Badge Notifications:

The lock screen can also display badge notifications. A monochrome badge logo must also be supplied
(this is a Store certification requirement). Like Lock Screen Tile Notifications, applications must opt into
lock screen notifications in the manifest by choosing either Badge or BadgeAndTileText in the visual
elements.

4.5.1 SAMPLE CODE

Lock Screen Manifest Markup for displaying Tile Text:

<VisualElements …>
 <LockScreen Notification="tileText"/>
 <SplashScreen Image="images\splashscreen.png" />
</VisualElements>

Lock Screen Manifest Markup for displaying a Badge:

<VisualElements …>
 <LockScreen BadgeLogo="images\badgeLogo.png" Notification="badge"/>
 <SplashScreen Image="images\splashscreen.png" />

Elements of Mosh: the developer story Page 115 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

</VisualElements>

Lock Screen Manifest Markup for displaying a Badge and Tile Text:

<VisualElements …>
 <LockScreen BadgeLogo="images\badgeLogo.png"
Notification="badgeAndTileText"/>
 <SplashScreen Image="images\splashscreen.png" />
</VisualElements>

4.5.2 REFERENCES

1. M3 tile templates
2. wpndisc

4.6 TOASTS

Toast notifications are transient notifications that interrupt the user with relevant, time-sensitive
information and provide a quick way to directly access that content in an application. Toast is great for
Incoming email alerts, IM requests and breaking news. When you think about how you’ll use a toast
notification, consider that the user may not see it.

Toasts provide developers with the capability to use their application to raise a notification. This
involves two steps:

1. Set the ToastCapable attribute of Visual Elements in your app’s manifest to true
2. Create the toast object using Xml markup
3. Supply the toast notification via Local WinRT APIs detailed below or using Push Notifications

(Section X.X).

That’s it. These steps create a new toast on the screen.

4.6.1 TOAST XML DESCRIPTION

Raising a Toast Notification is remarkably similar to a tile update – a developer creates an xml payload
based on a well-known template and passes that to a manager object to display. Toast is visually distinct
from a tile but the markup is similar. The most basic mark up for toast looks like this:

<toast launch="/update.html?id=89FD3452321D34A">

Elements of Mosh: the developer story Page 116 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 <visual
baseUri="http://www.contoso.com/users/871293/notify/89FD3452321D34A/"
 version="1">
 <binding template="Toast.Picture.01">
 <image id="1"
 src="package://runner.png"
 alt="This is an image" />
 <text id="1">Morning Marathon Training</text>
 <text id="2">Bellevue Club</text>
 <text id="3">7:30 AM – 8:30 AM</text>
 </binding>
 </visual>
</toast>

4.6.1.1 <TOAST>

The <toast> tag is what defines this as a toast. Inside the tag, a developer can include a launch context
property. This is a string that is passed to your application if the user activates (clicks on) the toast. The
format is:

Launch=”custom string”

This string is only for third party apps and has no meaning to Windows.

4.6.1.1.1 <VISUAL>

The <visual> tag contains all the visual properties of the toast notification including the template to use,
custom text, custom images and more.

4.6.1.1.1.1 BINDING

The template attribute is how the developer declares what UI template will be used by the toast.

Binding Attributes
Name Description
template (required) This attribute declares which template should be used. Implicitly,

this defines the number of valid text and image elements.

Binding elements are the way that a developer binds custom image and text to their notification. From
the example, above:

<binding template="Toast.Picture.01">
 <image id="1" src="package://runner.png" alt="This is an image" />
 <text id="1">Morning Marathon Training</text>
 <text id="2">Bellevue Club</text>
 <text id="3">7:30 AM – 8:30 AM</text>

Elements of Mosh: the developer story Page 117 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

</binding>

Binding Elements
Text Attributes Description
id (required) This attribute declares which text field the text should be

displayed in.
Image Attributes Description
id (required) This attribute declares which region the image should be

displayed in.
src (required) The path of the image. Images can be specified as JPG (.jpg

or .jpeg) or PNG (.png). The baseURI can be used in the visual
element to help save space in the your notification payload for
specifying images.

alt (optional) It is recommended that developers set this to specify the
alternate text for the image for accessibility purposes.

Image Protocols Description
Package An image resource included in the package (.appx) file. (Example:

package://images//welcome.png).
AppData An image resource in the applications AppData directory.

(Example: appdata://images//welcome.png).
http/https An image resource from the cloud. (Example:

http://www.mywebsite.com//images/welcome.png).

4.6.1.1.2 <AUDIO>

Since Toasts have the ability to play sound, the markup will also describe the audio that should
accompany the visual. Note: if no audio option (or tag) is specified, the system will play the default
sound.

Audio Attributes
Name Description
src (optional) Media file to play (system files only). (Example:

src="ms://boing.wav").
exit (optional) Ringing toasts only. Media file to play when Toast is dismissed.

(Example: exit="ms://whoosh.wav").
loop (optional) Ringing toasts only. Boolean to denote if playing the media file

should repeat. False by default. (Example: loop="true").
silent (optional) Used to indicate that this toast should play no sound. Overrides

Elements of Mosh: the developer story Page 118 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

src tag. (Example: silent="true").

4.6.2 WINRT API DETAILS
ToastNotificationManager Object
A factory class that gives you default content and produces ToastNotifiers for a given application
Method Description
GetDefaultContent Get a DOM containing the default XML for the specified template.
CreateToastNotifierForApplication Create a ToastNotifier object tied to the current application.

ToastNotifier Object
A class that can raise and hide Toast for a given application as well as managing Toast Notification
settings for that app.
Method Description
Setting

Show Schedules the toast for display – note that the OS may delay the actual
rendering of the toast based on other system activity.

Hide Remove the toast from the screen. Used primarily for communication
applications to respond to a call being answered.

ToastNotification Object
An object representing a toast notification. This can be shown using an instance of ToastNotifier.
Property Description
Content Allows developers to manipulate the XML template that defines the

appearance and behavior of the Toast Notification.
ExpirationTime Defines how long the toast is valid for. If the toast has not been shown by

expirationTime, it will be discarded. This makes little sense for toast
notifications.

4.6.3 EXAMPLE CODE

The following code shows the markup for a Toast notification.

<toast launch="/update.html?id=89FD3452321D34A">
 <visual
baseUri="http://www.contoso.com/users/871293/notify/89FD3452321D34A/"
 version="1">
 <binding template="Toast.Picture.01">
 <image id="1"

Elements of Mosh: the developer story Page 119 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 src="package://runner.png"
 alt="This is an image" />
 <text id="1">Morning Marathon Training</text>
 <text id="2">Bellevue Club</text>
 <text id="3">7:30 AM – 8:30 AM</text>
 </binding>
 </visual>
</toast>

This shows the required manifest markup in order to support sending Toasts:

<VisualElements … ToastCapable="true">
 <SplashScreen Image="images\splashscreen.png" />
</VisualElements>

This code shows how to send a toast locally using WinRT APIs.

var Notifications = Windows.UI.Immersive.Notifications;
var notificationManager = Notifications.ToastNotificationManager;

var toastXml =
notificationManager.getTemplateContent(Notifications.ToastTemplateType.toa
stSmallImageAndText04);

var strings = toastXml.getElementsByTagName("text");
strings[0].appendChild(toastXml.createTextNode("Morning marathon
training"));
strings[1].appendChild(toastXml.createTextNode("Bellevue Club"));
strings[2].appendChild(toastXml.createTextNode("7:30 AM – 8:30 AM"));

var images = toastXml.getElementsByTagName("image");
images[0].setAttribute("src",
"http://2.bp.blogspot.com/_FkWuK4k5RyI/Sdfzlv_C15I/AAAAAAAAAMQ/cfSSIB9gz-
8/s400/MichiganStateLogo.jpg");

var toast = new Notifications.ToastNotification(toastXml);
notificationManager.createToastNotifier().show(toast);

4.6.4 REFERENCES

1. Notifications Concept Document
2. Notifications XML API-DDI
3. Notifications API API-DDI

4.7 PUSH NOTIFICATIONS

Elements of Mosh: the developer story Page 120 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Push Notifications can be used to send a toast or tile notification from a webserver without the
application having to run on the local machine. To enable push notifications on the client, the developer
needs to do three things:

1. Request a channel using WinRT Notifications APIs
2. Send that channel to your application server
3. Use the application server to POST an XML payload to the channel via WNS

4.7.1 REQUESTING A CHANNEL

A notification channel is simply a URI that the application can use to send a notification to an individual
user’s specific machine. In order for an application to obtain a channel, it must use WinRT APIs. Details
on the WinRT APIs for requesting a channel can be found below:

PushNotificationChannelManager Object
Method Description
CreatePushNotificationChannelForApplicationAsync Request a channel from WNS for this application.

This closes any previous channels requested by
the application. This Async operation returns a
CreatePushNotificationChannelOperation object
which can be used to initiate a channel request.

Elements of Mosh: the developer story Page 121 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

PushNotificationChannel Object
Represents a channel that an app server can use to post messages to a given tile.
Property Description
Uri The URI to which a 3rd party app server should push a notification. This is

what should be transmitted to and stored by the third-party app server.
ExpirationTime Defines how long the channel is valid for. At expirationTime the channel will

behave as though it has been closed. Since channels are immutable, they
cannot be renewed and must be replaced with a call to
createPushNotificationChannelForApplicationAsync..

Method Description
Close Invalidate this channel. Any notifications pushed to this channel will be

dropped at the service. To resume sending push notifications to this
application, the app must request a new channel.

4.7.2 STORING A CHANNEL

There is good news and bad news in storing your channel. The bad news is that channel storage is very
dependent on your application semantics and implementation – we can’t really give useful sample code.
The good news is that storing a channel is pretty straightforward and involves remembering two pieces
of data – a URL of max length nnnnn and (optionally) a date at which that URL becomes invalid.

4.7.3 SENDING A TOAST OR TILE NOTIFICATION FROM THE SERVER

The job of the third-party app server is to store channels and push notifications when relevant events
occur. When sending a notification via WNS, the third party app server should set the appropriate
headers, and then post the notification XML to the channel URI. Relevant headers are described, below.

4.7.3.1 HTTP POST HEADERS

The sender must set the following headers as well as setting the content type to text/xml.

HTTP POST Headers
Header Description
X-WNS-Type Tells the server what type of notification is in the payload.

Values: wns/tile, wns/badge, wns/toast, wns/raw
X-WNS-Priority This tells WNS how to batch notifications when the client is unavailable. For

windows 8, the value must be set according to notification type (e.g. no
normal priority toast or high-priority badges).

Elements of Mosh: the developer story Page 122 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Values: high – for toast; normal – for all other notifications.
X-WNS-TTL This is the time (in seconds) for which the toast is valid. It should be non-

zero.
Values: Positive integers

4.7.3.2 HTTP POST PAYLOAD

For toast, tile, and badge updates, this is the XML template described in the sections covering those
areas. For RAW notifications, it is up to you.

4.7.3.3 HTTP POST STATUS CODES AND ERRORS

Once you post a message to the WNS channel URI, you’ll get back one of the following responses:

HTTP POST Status Codes
Code Description
200/success WNS received your notification and will try and deliver appropriately. Note

that this does not necessarily mean that it will arrive at the client.
400/bad request
401/unauthorized The secret key that you provided to WNS is not authorized to send to the

channel URI to which you posted.
405/method not allowed You tried to access the URI using GET instead of POST.
500/internal server error Problem with WNS. Please contact support.

4.7.4 EXAMPLE CODE

The following shows the code for obtaining a channel using WinRT APIs:

var PushNotifications = Windows.Networking.PushNotifications;

var channelOperation =
PushNotifications.PushNotificationChannelManager.createPushNotificationCha
nnelForApplicationAsync();

channelOperation.then(function (newChannel) {
 // store channel
 var expiration = newChannel.expirationTime;
 var uri = newChannel.uri;
 },
 function (error) {
 // Error obtaining Channel
 }
);

Elements of Mosh: the developer story Page 123 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.7.5 REFERENCES

1. Notifications Concept Document
2. Notifications XML API-DDI
3. Notifications API API-DDI

4.8 SNAPPING

In the immersive environment, the user can see either one or two apps on screen at a time. When there
are two apps on screen, one of them will be big and the other will be small. The small one is called the
“snapped” app. The act of making an app small is called “snapping”.

Snapping is what allows the user to multitask with two apps visible at the same time. A snapped app is
always a standard width, measured in touch independent pixels (TIPs), and can be placed on either side
of the screen. The app that shares the screen with the snapped app fills the remaining display area.

 App snapped left App snapped right

It’s trivial for the user to change which app is big and which app is small by manipulating the splitter
between the two apps.

4.8.1 APPLICATION LAYOUT

An application can be displayed in one of three layouts:

• Snapped – 320 touch independent pixels (TIPs) wide, at the left or right side of the screen. It is
always the full height of the screen.

• Fill – Fills the portion of the screen not occupied by the snapped app. In a landscape orientation,
all fill states are always a minimum of 1024px wide.

• Full screen – Only one app visible, spanning edge to edge

A user can put an app into any one of these states at any time.

Elements of Mosh: the developer story Page 124 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.8.2 HOW TO THINK OF THE SNAPPED STATE

The snapped app is the app resized. It is not a gadget. All immersive apps can be snapped, just as all
windows can be Aero Snapped in Windows 7. However, unlike Aero Snap, the snapped state in the
immersive shell is a fixed width, so the app developer can design and target for that specific size. The
app developer doesn't have to design for the awkward widths between snapped and fill states.

If the app doesn’t design for the snapped state, the app’s window will still be resized. Content can be
cropped and scrollbars may be introduced.

The Windows 8 multitasking value prop depends on applications providing value when they are
snapped.

4.8.3 DESIGNING FOR THE SNAPPED STATE

1. Maintain state and preserve continuity
Snapping and unsnapping is trivially easy for the user and they can do it at any time. Your app
can be snapped even when it wasn't the user's specific intention to snap you; they might just
want to make the other app bigger. Because of this, snapping and unsnapping should never
destroy the user's “work”.

All layouts, pages, and views supported by your app in fill and full-screen states should ideally
have corresponding snapped versions. Snapped views don't need to be – and often cannot be –
identical to the fill and full-screen layouts, but the overall context should be maintained.

In this example using Pandora, although the snapped state hides the timeline, resizes the image,
and reflows the layout, the user maintains overall context.

But you say:

• "I don't have the resources to design <insert obscure feature> for the snapped state."

snap

Elements of Mosh: the developer story Page 125 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• "I tried but simply can't make this feature work in this small state!"

Recommendation:
Maintain the state at least, even if it means showing reduced functionality in the snapped view.
If you absolutely cannot build a tailored snapped view for a page, prioritize maintaining state
over showing the user a more attractive but otherwise out of context snapped page.

What we DO want: In this example using Flickr, even though the list of selected of photos at the
bottom of the screen is not available in the snapped state, which forces reduced functionality,
the user's selections are preserved.

What we DON’T want: Whenever Flickr is snapped, it sends the user to a beautifully-designed,
full-featured snapped view of its main Photostream page, regardless of what the user was
seeing before that.

What we DO want: In this example using Angry Birds, when the app is snapped, the user cannot
continue playing (reduced functionality), but the state of the game is preserved.

snap

snap

 Resume

Elements of Mosh: the developer story Page 126 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

What we DON’T want: Whenever Angry Birds is snapped, it sends the user to a beautifully-
designed full-featured snapped state of its Top Scores page.

2. Have feature parity across states
Strive to have feature parity across snapped and unsnapped states. Remember that snapping in
the immersive environment is a parallel to Aero Snapping in the classic Desktop; the user does
not expect to lose features when they snap your app.

In those cases where you simply cannot support a feature in the snapped state, we recommend
keeping an entry point to that feature and programmatically unsnapping the app when the user
triggers that entry point.

In this example using Flickr, the Upload button launches the Picker. There is no snapped version
of the Picker, but it is better to leave the entry point to the Upload feature and
programmatically unsnap when necessary than to omit the feature altogether in the snapped
state.

3. Put the user in control
The choice of the app's layout state should be left to the user, except in special cases. Reserve
the ability to programmatically unsnap your app for situations when it is absolutely necessary to
do so. (See below for more details how to programmatically unsnap) For instance, the scenario
mentioned above in which Flickr could only provide the Picker when in a nonsnapped state is
one in which there is a justification for leaving the snapped state programmatically. If your app
has snapped views for all possible pages in the app, there should be no need to use
programmatic unsnapping at all.

4. Use media queries for your layout logic

snap

Elements of Mosh: the developer story Page 127 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Take advantage of the media queries technology1 to drive your layout logic. See the View Sizing
and Scaling section for more details on using media queries. The following example show how
you can use media queries in applying CSS styles to the different layout states.

@media (win-ui-layout: snapped) {
 // CSS styles for the snapped layout state
}

@media (win-ui-layout: filled) {
 // CSS styles for the fill layout state
}

@media (win-ui-layout:fullscreen) {
 // CSS styles for the full screen layout state
}

Note: This win-ui-layout media query is not yet implemented. In the meantime, you can use the
existing max-width media queries to simulate this.

// The following assumes a device with target resolution of 1366x768

@media (max-width: 320px) {
 // CSS styles for the snapped layout state
}

@media (min-width: 321px) and (max-width: 1024px) {
 // CSS styles for the fill layout state
 }

@media (min-width: 1025px) {
 // CSS styles for the full screen layout state
}

When do I use media queries and when do I use JavaScript layout change events?

• Use Media Queries to drive layout changes and to manipulate properties that can be specified
through CSS styles. For example:

o Element sizes
o Element layout (inline, block)
o Visibility of various elements

1 References: http://www.w3schools.com/CSS/css_mediatypes.asp
 http://ie.microsoft.com/testdrive/HTML5/CSS3MediaQueries/Default.html

Elements of Mosh: the developer story Page 128 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• Use JavaScript events from the Application Layout API
(Windows.UI.Immersive.ApplicationLayout) to drive behavior changes and to manipulate
properties that cannot be specified through CSS styles. For example:

o Scroll direction of the ListView control
o Changing controls – going from a list of buttons to a single drop down select control

4.8.4 APPLICATION LAYOUT API

The Application Layout API exposes the application's current layout information. It allows you to:

• Register for application layout change events
• Query your current application layout state
• Unsnap your snapped app

Registering for layout changes through this API is optional, but the snapping experience is not. Apps that
do not register for these events will be snapped anyway; your apps’ window will be resized, but your
app will simply not be notified.

4.8.4.1 QUERYING LAYOUT

Your app can query which layout it is currently assigned. This is particularly useful during launch or
rehydration to make sure that you are loading the correct layout for your app. The following JavaScript
code shows how to perform that query.

var appLayout =
Windows.UI.Immersive.ApplicationLayout.getForCurrentView(),
 layoutState = Windows.UI.Immersive.ApplicationLayoutState;

if (appLayout.value == layoutState.snapped) {
 // Snapped

} else if (appLayout.value == layoutState.filled) {
 // Fill

} else if (appLayout.value == layoutState.fullscreen) {
 // Full screen
}

4.8.4.2 HANDLING LAYOUT CHANGE EVENTS

Layout change events are fired whenever your app's layout is changed, which allows you to react
appropriately to your new state (for instance, reflow your layout for the snapped state). The following
JavaScript code registers an app for layout change events and provides a way for handling the new
layout.

Elements of Mosh: the developer story Page 129 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

var appLayout =
Windows.UI.Immersive.ApplicationLayout.getForCurrentView();

function onLoad() {
 // Register application layout change events
 appLayout.addEventListener("layoutchanged", onLayoutChanged);
}

function onLayoutChanged() {
 var layoutState = Windows.UI.Immersive.ApplicationLayoutState;
 if (appLayout.value == layoutState.snapped) {
 // Handle snapped state
 } else if (appLayout.value == layoutState.filled) {
 // Handle fill state
 } else if (appLayout.value == layoutState.fullscreen) {
 // Handle full screen state
 }
}

document.addEventListener("DOMContentLoaded", onLoad, false);

4.8.4.3 PROGRAMMATIC UNSNAPPING

Your app can programmatically move out of the snapped state if you app has activation. However,
whether your app moves into a fill or full-screen state is determined by the state of the system.

As mentioned earlier, reserve the ability to programmatically unsnap your app for situations when it is
absolutely necessary to do so, such as when your app is being activated into a context that is not
adequately supported in the snapped state.

The following JavaScript code demonstrates a scenario that uses programmatic unsnapping.

var appLayout =
Windows.UI.Immersive.ApplicationLayout.getForCurrentView(),
 programmaticUnsnapped = true;

function onSlideShowButtonClicked() {
 // Set state before calling tryUnsnap() since the order in which
 // tryUnsnap() returns and when the layoutChanged handler is triggered
 // is nondeterministic.
 programmaticUnsnapped = true;

 // Disable button so user doesn't try to repeatedly press the button
 slideShowButton.disabled = true;

 // Attempt unsnap
 var success = appLayout.tryUnsnap();

 if (!success) {
 // Reset state, clean up and show error as necessary

Elements of Mosh: the developer story Page 130 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 programmaticUnsnapped = false;
 slideShowButton.disabled = false;
 }
}

document.addEventListener("DOMContentLoaded", function() {
 slideShowButton.addEventListener("click", onSlideShowButtonClicked,
false);
}, false);

4.8.4.4 RECOMMENDED SNAPPED STATE UI LAYOUTS

1. Panning Direction
Take advantage of the snapped layout’s “tall and skinny” aspect ratio and pan vertically. If your
app changes panning direction between snapped and nonsnapped states, make sure it is clear in
the UI that panning direction has changed

In this example, TechCrunch’s “Featured posts” layout uses a horizontal panning ListView
control (MoCo) in nonsnapped state, but converts into a vertically panning list in snapped state.
Notice that the item templates have changed to sufficiently indicate that direct of panning have
also changed.

The following sample code demonstrates how you can change the panning direction of a MoCo
in JavaScript.

// There exists somewhere on the html page, an element with id ‘moco’ that
contains the ListView control

var moco = Win.UI.getControl(document.getElementById("moco")),
appLayout = Windows.UI.Immersive.ApplicationLayout.getForCurrentView();

document.addEventListener("DOMContentLoaded", function() {
 appLayout.addEventListener("layoutchanged", onLayoutChanged);
}, false);

snap

Elements of Mosh: the developer story Page 131 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

function onLayoutChanged() {
 var layoutState = Windows.UI.Immersive.ApplicationLayoutState;
 if (appLayout.value == layoutState.snapped) {
 moco.layout = {type: Win.UI.ListLayout};
 } else {
 moco.layout = {type: Win.UI.GridLayout};

 }
}

Please see ListView section for more details on the control.

2. Column Layouts
Given the narrow width of the snapped state, we recommended transitioning any multi-column
layouts in the non snapped states to a single column layout when snapped.

In this example, this app has multi-column layout in its nonsnapped state. When the app is
snapped, elements of the layout effectively “stack” above one another create a single column
layout.

 snap

Elements of Mosh: the developer story Page 132 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The following sample code demonstrates how this can be achieved with the grid control via CSS:

<div id="grid">
 <div id="A">#A</div>
 <div id="B">#B</div>
 <div id="C">#C</div>
</div>

#grid {
 display: -ms-grid;
 -ms-grid-rows: 100px 1fr;
 -ms-grid-columns: 200px 1fr;
}

#A {
 -ms-grid-row: 1;
 -ms-grid-column: 1;
 -ms-grid-column-span: 2;
 width: 100%;
 height: 100%;
 background-color: blue;
}

#B {
 -ms-grid-row: 2;
 -ms-grid-column: 1;
 width: 100%;
 height: 100%;
 background-color: green;
}

#C {
 -ms-grid-row: 2;
 -ms-grid-column: 2;

snap

Elements of Mosh: the developer story Page 133 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 width: 100%;
 height: 100%;
 background-color: purple;
}

/* Until win-ui-view-state is implemented, we will use max-width to
simulate this */
@media (max-width:320px) {
 #grid {
 display: -ms-grid;
 -ms-grid-rows: 100px auto 1fr;
 -ms-grid-columns: 1fr;
 }

 #A {
 -ms-grid-row: 1;
 -ms-grid-column: 1;
 }

 #B {
 -ms-grid-row: 2;
 -ms-grid-column: 1;
 }

 #C {
 -ms-grid-row: 3;
 -ms-grid-column: 1;
 }
}

Please see CSS Grid Layout wiki for more details on how to use the CSS grid to control layout.

4.8.5 REFERENCES

1. Switching and Snapping Functional Spec
2. Application Layout API Document

4.9 APPLICATION LIFECYCLE AND RUNNING IN THE BACKGROUND

Windows 8 introduces a new application lifecycle model. In Windows 8 applications in the foreground
(docked or in main section of the screen) are running. Applications that are not visible are suspended or
not running. A suspended application stays in memory but may be removed from memory at any time if
memory pressure is detected. Suspending applications that are not in the foreground helps Windows 8
achieve great battery life and system performance.

With this new application lifecycle is a set of events which indicate what part of the lifecycle the
application is entering so the application can react appropriately.

Elements of Mosh: the developer story Page 134 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Application lifecycle events
Events Description
Suspending Raised when the application is no longer in the foreground.
Resuming Raised when the application is activated from a suspended state.
NotVisible (not yet implemented)
Visible (not yet implemented)

4.9.1 HANDLING SUSPEND

When an application is no longer visible the application receives the Suspending event if it has been
registered to receive it. Once the event is raised the application has 5 seconds to handle the event. If the
application does not return from the event within 5 seconds the application is terminated.

Applications will not get another chance to execute code from this stage if the system encounters
memory pressure so the application should save its current state to disk so the user can be taken back
to where they left off when the application activated again.

Windows.UI.WebUI.WebUIApplication.addEventListener("suspending",
suspendingHandler, false);

function suspendingHandler(eventArgs){
 // signaling a need to delay the suspend for this application
 var deferral = eventArgs.suspendingOperation.getDeferral();

 // start saving state
 var localFolder = Windows.Storage.ApplicationData.current.localFolder;
 var fileOperation = localFolder.createFileAsync("mystatefile",
Windows.Storage.CreationCollisionOption.replaceExisting).then(
 function(file)
 {
 // writing state into the file
 // signaling that the application is done saving the state
 deferral.complete();
 });
}

4.9.2 HANDLING RESUME

When an application is activated it may already be suspended in memory. If that is the case the
application will be Resumed. When an application is resumed from a suspended state it has all of the
same objects in memory it had before it was suspended.

Note: if it has been several days since the application was resumed, and taking the user back to what
they were doing before does not make sense it is recommended that the resuming event reset the
application to its start screen.

Elements of Mosh: the developer story Page 135 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Windows.UI.WebUI.WebUIApplication.addEventListener("resuming",
resumingHandler, false);

function resumingHandler() {
 // start loading state
 var appData = Windows.Storage.ApplicationData.current;

 // the top score might have changed while the app was suspended
 var topScore = appData.roamingSettings.values.lookup("TopScore");

 // continue with other resume operations
}

4.9.3 APPLICATION CRASH OR HANG

If your application crashes or has been unable to process input for 10 seconds it will be terminated by
the system. The application will not get a Suspending event before it is terminated.

The next time the application is launched the application can check for a “start fresh” bit that is the
indication to the application that it was terminated unexpectedly. Applications should consider
disregarding any stored state in this case in the event that the stored state caused the crash. This can be
checked upon receiving the activation event using the reason property on the activation event args.

4.9.4 BACKGROUND AUDIO

In general, applications do not get to execute code in the background. However, if the application needs
to play audio it can be allowed to execute when the application is not visible on the screen.

To enable this developers must add the following to the application manifest:

 <Extensions>
 <Extension Category="windows.backgroundTask" EntryPoint="MyApp.Audio">
 <BackgroundTasks>
 <Task Type="audio"/>
 </BackgroundTasks>
 </Extension>
 </Extensions>

To play audio in the background developers must declare an audio stream type of “Media,” “Narration,”
or “Communications.” This can be done via an attribute of an audio/video tag, like this:

<audio src="song.mp3" ms-AudioCategory="Multimedia" controls />

An audio category can also be selected directly via the Windows Audio Streaming API’s (WASAPI).

Elements of Mosh: the developer story Page 136 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The complete list of categories is:

typedef enum
{
 Multimedia, // Music, Streaming audio, Video with audio
 Communications, // VOIP, chat, phone call
 Alerts, // Alarm, ring tones, notifications
 GameMedia, // Background music for games (non-effect game sounds)
 SoundEffects, // Sound effects, clicks, dings, gun shot
 Narration, // Screen reader, eBook reader
 Other // Uncategorized streams
} AudioCategory;

Each audio output stream has a stream type indicating the type of audio being played. Only one audio
stream per type is allowed to play in the background at any given time – but if multiple audio types are
playing, they might all play simultaneously (eBook while listening to music).

Note: when the audio playing application goes to the background it will not get a Suspending event.

4.10 SEARCH

The search application contract enables developers to use the Windows Search UI to provide search
functionality for their application. This contract has two required parts:

• The source application contract for creating an in-app search experience.
• The target application contract to handle being activated with a specific query.

The source application is the active MoBody application that uses the Windows Search UI to provide an
in-app search experience. For this experience, a source app can use Type Ahead to display search
suggestions as the user enters their search query. Type Ahead allows these search suggestions to be
supplied by the application or by Windows, which uses search history or local file metadata. The source
application handles the submission of the user’s query and displays the search results. The source
application fulfills its contract by using the WinRT SearchPane, which provides search-related properties
and events, such as QuerySubmitted.

A target application is an application that can receive the search query even though it is not running in
the MoBody. Target applications are displayed in the Windows Search UI after search suggestions. If a
user selects one of these applications, Windows launches the selected application directly into the
MoBody so that it shows search results for the user’s query. A target application fulfills the target
contract by registering through its manifest and adding support for being activated to its Search mode
(the application is launched to its search results view for the query).

Elements of Mosh: the developer story Page 137 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

While Search itself is an optional contract, any search application has to fulfill both source and target
contracts to participate in the search experience. If an application doesn’t participate in Search, the
Windows Search UI doesn’t show the app in the search pane’s app list.

Figure 1: Example of an Application that participates in the Search contract

4.10.1 OVERVIEW OF THE SEARCH CONTRACT—THE SOURCE APP CONTRACT

The source application (the active MoBody application), uses the MoSh Search UI and Type Ahead to
provide an in-app search experience using the SearchPane object provided by the Windows Runtime.
The SearchPane should be configured for the application before the communication between the
SearchPane and the application begins. For a better East-Asian experience, Windows will provide
linguistic alternatives so applications can perform searches based on a user’s phonetic input, without
the need to wait for the user to convert their input into Chinese or Japanese characters.

4.10.1.1 THE SEARCH SYSTEM FLOW

1. The user launches a modern application that supports Search.
2. Upon being launched and shown in the MoBody, the application obtains the SearchPane WinRT

object and sets up the relevant events and properties for its search experience.

Elements of Mosh: the developer story Page 138 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

3. At a minimum, the application needs to register to handle the QuerySubmitted event so that it
can show the search results for a user’s query. If the application wants to provide its own Type
Ahead, the application will also need to handle the SuggestionsRequested event. If the
application uses Windows to provide Type Ahead, Windows will use either search history and/or
LocalContentSuggestions, depending on how the SearchPane is configured.

4. When the user opens the Search Pane via the Search Charm and begins typing, the
SuggestionsRequested event is called. The application has the ability to provide its own Type
Ahead items that correspond to the user’s current search query. If the application wants to
provide a word wheel search experience it can use the QueryChanged event.

5. When the user submits their search, the application’s QuerySubmitted event is raised. The
application retrieves and displays search results for the query it receives in this event.

4.10.1.2 WINRT API DETAILS
SearchPane Static Methods
Method Description
GetForCurrentView Enables the developer to obtain the SearchPane object for the apps current

view.

SearchPane Object
Property Description
SearchHistoryContext Enables the developer to have more flexibility over how previous

searches are stored. If there are two different search scopes, the
developer can have previous searches stored on a per scope
basis. This property does not have to be specified.

PlaceholderText The string that appears in the Action Space Search Box before any
character is entered into the Search Box.

QueryText Sets or retrieves the Search Control’s Query Text.
Visible Determines whether the Search Control is visible.
LanuageTag Specifies the user’s locale.
SearchHistoryEnabled Specifies whether Windows tracks search history and uses it to

provide suggestions for the Search control.
Events Description
VisibilityChanged Raised when the Seach Pane is shown or hidden.
QueryChanged Raised when the user updates their search query.
QuerySubmitted Raised when the user initiates a search.
SuggestionsRequested Raised whenever the application can provide suggestions for a

user’s query input.
Method Description

Elements of Mosh: the developer story Page 139 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Show Shows the Search Pane in the minimized mode.
SetLocalContentSuggestionSettings Specifies settings for Windows automatically providing Search

Suggestions from the user’s Local Files.

LocalContentSuggestionSettings Object
Property Description
Enabled Allows the developer to specify if it wants Windows to

automatically provide Search Suggestions from the user’s Local
Files

Locations A list of Storage Folders which represent local libraries or folders
to retrieve LocalContentSuggestions from.

AqsFilter Filters the files of the specified scopes to further restrict the
LocalContentSuggestions.

PropertiesToMatch Determines which properties are used for
LocalContentSuggestions.

4.10.2 THE TARGET APP CONTRACT

When an application registers for the Search contract through its manifest, the application appears in a
list provided by the MoSh Search UI when the user issues a query in other applications. When an
application is selected from the app list, it becomes the active MoBody application and shows the search
results for the user’s query. The target app registration provides details about how the application can
be launched directly to its search view either by specifying an HTML page or an ActivateableClassID.

The target app Search contract is executed as follows:

1. The developer adds the search registration markup to the app’s manifest. This registration
includes details on how to launch the application directly to its Search mode.

2. The user installs the application.
3. Upon install, Windows stores the search registration details from the app’s manifest in the

contract data store.
4. The user clicks the Search Charm to display the Search Pane.
5. The Search Pane uses the contract data store registrations to populate the Search Pane UI with

all the applications that can receive the query.
6. After the user types a query and selects an application in the Search Pane, Windows uses the

registration details in the contract data store to launch the application in its Search mode.
7. Windows uses the WinRT Activation object to send the search query to the application.

The following code shows the manifest registration for the Search Target contract.

Elements of Mosh: the developer story Page 140 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

<Extension Category="windows.search" StartPage="search.html">
</Extension>

Activation Context WinRT Object:

Activation Context Object
Property Description
QueryText The user’s query.
LanguageTag The user’s locale.

4.10.3 SAMPLE JS CODE

The following example shows the minimum required code for implementing the source and target
Search contracts.

Required Manifest Entry:
<Extension Category="windows.search" StartPage="search.html">
</Extension>

Required JavaScript Code:
// Supporting Search Contract Activation
Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
scenario1SearchActivated, false);

function scenario1SearchActivated(e) {
 // Search activation
 if (e.contractId === "Windows.Search") {
 if (e.queryText === "") {
 // Navigate to your landing page since the user is pre-scoping
to your app
 } else {
 // Display results in UI for e.queryText
 showResultsForQuery(e.queryText, e.languageTag);
 }
 } else { // Non Search Activation
 // Other Activation Code
 }
}

// Support receiving a search query while running as the main application
Windows.UI.Immersive.Search.SearchPane.getForCurrentView().addEventListene
r("querysubmitted", querySubmitted, false);

function querySubmitted(e) {
 // Display results in UI for e.queryText
 showResultsForQuery(e.queryText, e.languageTag);
}

function showResultsForQuery(query, locale) {

Elements of Mosh: the developer story Page 141 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 // Draw results in UI
}

The following example shows how to enable LocalContentSuggestions from the music library.

var localSuggestionSettings = new
Windows.UI.Immersive.Search.LocalContentSuggestionSettings();

localSuggestionSettings.enabled = true;
localSuggestionSettings.locations.append(Windows.Storage.KnownFolders.musi
cLibrary);
localSuggestionSettings.aqsFilter = "kind:=music";

Windows.UI.Immersive.Search.SearchPane.getForCurrentView().setLocalContent
SuggestionSettings(localSuggestionSettings);

The following example shows the code required for an application to provide search suggestions.

Windows.UI.Immersive.Search.SearchPane.getForCurrentView().addEventListene
r("suggestionsrequested", handleSuggestionRequest, false);

// Provide suggestions from app defined list
function handleSuggestionRequest(e) {
 var query = e.queryText.toLowerCase();
 var suggestionRequest = e.request;
 var suggestionList = ["Shanghai", "Istanbul", "Karachi", "Delhi",
"Mumbai", "Moscow", "São Paulo", "Seoul", "Beijing", "Jakarta", "Tokyo",
"Mexico City", "Kinshasa", "New York City", "Lagos"];

 for (var i = 0, len = suggestionList.length; i < len; i++) {
 if (suggestionList[i].substr(0, query.length).toLowerCase() ===
query) {

 suggestionRequest.searchSuggestionCollection.appendQuerySuggestion(
suggestionList[i]);
 if (suggestionRequest.searchSuggestionCollection.size === 5) {
 break;
 }
 }
 }
}

4.10.4 REFERENCES

1. Search API Doc
2. Search Functional Spec

4.11 SHARE

Elements of Mosh: the developer story Page 142 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Sharing enables users to share content from their current application with another
application. Developers of any Windows application can utilize the Windows share functionality to
enable their users to share content. Apps that provide shareable content are called source
applications. The source application is the active application in the MoBody. An example source
application is a magazine reader.

Developers of sharing applications can utilize the share functionality so that users can share to their
application from any source application. Apps that receive shareable content and make it visible to
other users are called target applications. The target application is displayed in a flyout window. An
example target application is Facebook.

When the user chooses the Share Charm from the Windows Edgy bar, the Share flyout opens in
response:

1. Source applications provide the shareable item, potentially in multiple formats. The first format
is displayed in the content preview. The shareable item is also used to determine which
QuickLinks and applications to display in the list. Items are excluded if they cannot support at
least one of the formats for the shareable item.

2. Applications and quicklinks are displayed based on whether their package manifest indicates
that they support sharing. Quicklinks are displayed based on data passed back by target
applications after the user has used them to share.

3. After a user chooses a quicklink or application from the list, the target app flyout opens.
Windows launches the correct target application and the target application displays UI for
sharing. The target application reads the shareable item from the source application.

Elements of Mosh: the developer story Page 143 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Figure 2: A source app participating in the sharing contract

Figure 3: A target app participating in the sharing contract

4.11.1 OVERVIEW OF THE SHARE SOURCE APP CONTRACT

By default, when the user shares data from an application, the system gives the user an option to take a
screenshot of the source application and share it with a target application. If the application wants to
override the system default behavior and implement the contract it has to:

1. Create DataTransferManager object & handle DataRequested notification.
2. If you’re retrieving data synchronously, set the Data or invoke the FailWithDisplayText method

on the DataRequestedEventArgs object before the timeout.
3. If you’re retrieving data asynchronously, then retrieve a DataRequestDeferral object and call

Complete after the data is set or after there’s an error getting the data.

Property Description
Title (required) A string for title of sharable content
Description (optional) A string for brief description of content

4.11.1.1 THE SHARE SYSTEM FLOW – SOURCE APP

1. The user opens the source application. The source application registers to support Share by
creating a DataTransferManager object.

Elements of Mosh: the developer story Page 144 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

2. When the user invokes Share from the Windows Edgy bar, the system takes a screenshot that
can be used if the user selects it from the default screen. If the application has registered for
sharing, the system instead asks the application for the shareable item.

3. The system uses the formats of the shareable item to filter the quicklinks and app list and to
display the Content Tile.

a. Note: If the source app is going to use delayed rendering of FileItems, the system uses
the file extensions provided in the FileTypes property to filter the quicklinks and app list

4. The user chooses the target app. The system adds the applications to the OS Task completion
list so they cannot be killed while participating in the sharing flow. The
TargetApplicationChosen notification is sent so the source application can record the app for
business intelligence purposes.

5. <See steps the next section for information about what the flow after the user chooses a target
application.>

4.11.1.2 WINRT API DETAILS

The source contract for the Sharing and SendTo flows utilize the same WinRT objects. For charms
invocation, the source application doesn’t know whether it was invoked for Sharing or Send To. For
programmatic invocation, the source application has to choose which UI to display.

Windows.UI.Immersive.DataTransfer.DataTransferManager Static Object – used for programmatic
invocation only [optional]
Methods Description
ShowShareUI Programmatic invocation of the Share flow. Most source applications

should not need to use this because they can rely on the charms
invocation.

ShowSendUI Programmatic invocation of the Send flow (in the Connect charm). Most
source applications should not need to use this because they can rely on
the charms invocation.

GetForCurrentView Returns DataTransferManager object associated with the current window.

Windows.UI.Immersive.DataTransfer.DataTransferManager Object
Events Description
DataRequested This notification occurs when the user presses the Share or Connect charm

(the source application intentionally does not know which charm the user
pressed). The app needs to respond within the timeout by calling a
method or setting the property on the DataRequest object retrieved
through the DataRequestedEventArgs object.

TargetApplicationChosen This notification occurs when the user chooses a target application in the
Share or Connect charm. The app can use this to record information for

Elements of Mosh: the developer story Page 145 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

business intelligence purposes about which applications are used to
complete actions.

Windows.UI.Immersive.DataTransfer .DataRequestedEventArgs Object
Property Description
Request Allows developer to get the DataRequest object to either set the data or

fail with display text.

Windows.UI.Immersive.DataTransfer.DataRequest Object
Methods Description
FailWithDisplayText Needs to be called before timeout in response to the event notification,

DataRequested, to opt-out of Sharing or Send To given the current state of
the source application and provide an error string instead.

GetDeferral Returns DataRequestDeferral object which is necessary in order to set data
for share that is retrieved via an asynchronous operation.

Property Description
Data Needs to be set before timeout in response to the event notification,

DataRequested, to provide a Data Package for Share or Send.

Windows.UI.Immersive.DataTransfer.DataRequestDeferral Object
Methods Description
Complete Is used in scenarios when data for share is retrieved via an asynchronous

operation. After the data is set or an error occurs, call Complete.

Windows.UI.Immersive.DataTransfer.TargetApplicationChosenEventArgs Object – used for gathering
business intelligence about the target application only [optional]
Property Description
ApplicationName After the event notification, TargetApplicationChosen, this property is set

with the target application’s name.

4.11.2 OVERVIEW OF THE SHARE TARGET APP CONTRACT

To be a target application for Share, an application must:

Elements of Mosh: the developer story Page 146 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1. Register support for the ShareTarget extension in package manifest and include at least one
supported file extension or data package format in application manifest (hint: file extensions
must come first!)

2. Handle Share Activation & use the Data provided on the ShareTargetActivationContext object.
ShareTargetActivatedEventArgs, which is passed through onActivate(), contains a property
called ShareTargetActivationContext which is of type ShareTargetActivationContext.

3. For an extended share only, call ReportExtendedShareStatus once the user has committed the
share task and the app is ready to be added to the share progress list.

a. Optionally report additional status to optimize resource usage of the system.
b. Optionally call SetExtendedShareDisplayText to be shown on the app tile in the

progress list.
c. Optionally report a catastrophic failure with ReportExtendedShareError.

4. Call ReportCompleted when the share is complete and return a QuickLinkInfo object if the
share was successful

4.11.2.1 SHARE SYSTEM FLOW – TARGET APP

1. The user installs the target application. The target application’s package manifest declares that it
supports sharing.

2. The system copies this information and stores it so it can be later queried to display applications
in the share flyout.

3. <See steps above in the system flow as it pertains to the source application>
4. When the user chooses the target application, the system will activate that application via its

application interface and using the details it provided during registration to launch it directly to
its share view

a. While the application is being activated, the system will display a splash screen for the
application

5. The system will add the target application to the OS Task completion list so it cannot be killed
while part of the sharing flow or when completing a share in the background

6. If the target application handles extended shares—usually the case if they upload content types
that can take more than a few seconds—they report status as they go:

a. They report when the user presses the Submit/Share/Post/Upload button and thus if
the user taps outside of the flyout, the system will hide the window vs. destroy it

7. When the target application is finished, it calls ReportCompleted and the system stores the
quicklink. At this point, the system removes it from the OS Task completion list.

Note: There are optimizations the target can do to preserve battery life and these are covered in more
detail in the Sharing Platform functional spec. They only apply to target applications that support
extended share scenarios.

Elements of Mosh: the developer story Page 147 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The following example shows how an application registers for sharing in its package manifest.

<Extension Category="windows.shareTarget" StartPage="share.html">
 <ShareTarget>
 <SupportedFileTypes SupportsAnyFileType="false">
 <FileType>.png</FileType>
 <FileType>.customFileType</FileType>
 </SupportedFileTypes>
 <DataPackageFormat>Uri</DataPackageFormat>
 <DataPackageFormat>Text</DataPackageFormat>
 </ShareTarget>
</Extension>

4.11.2.2 WINRT API DETAILS

Windows.UI.Immersive.ShareTarget.ShareTargetActivationContext Object
Property Description
Data A Modern Data Package that contains the data passed by the source

application.
QuickLinkId The string for the quicklink that was selected by the user. This is

just passing back to the application what it original set as the
TargetId in the QuickLinkInfo object.

Methods Description
ReportCompleted The target application should call this after the share has completed

successfully or unsuccessfully. The complete call closes the UI and
effectively shuts down the application. For a quick share, this
should be called immediately after the user presses ‘share’. A quick
share is a task where it’s reasonable for the user to view the UI until
the share completes, such as posting a message to Twitter. For an
extended share, this will be called after the final data
transfer/upload is complete, which is likely quite a while after the
user presses ‘share’. An extended share is a task where it’s
unreasonable to make the user wait and view the share UI until the
share completes, because it will take more than 5 seconds, such as
uploading photos to Flickr.

ReportExtendedShareError The target application should call this after the share has completed
unsuccessfully and it has the option of returning a string that will be
displayed in the UI. Generally, the application should report an
error only if something unrecoverable has happened

Elements of Mosh: the developer story Page 148 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

RemoveThisQuickLink The target application should call this if it needs to remove a
quicklink because it has become out of date and no longer relevant
to the user. This will completely remove that quicklink from the
user’s history. If an application just wants to update a quicklink, it
can do so by updating information in the QuickLinkInfo object it
returns.

ReportExtendedShareStatus If the target application supports extended share scenarios, then it
should use this method to report status to the share platform. The
application needs to report values defined in the
ExtendedShareStatus enum:

• Started – This is required for extended shares to behave
correctly in the UI model. The application should report this
after the user has committed the share task. This puts the
app in the share progress list and enables a user to close the
window without shutting down the application and thus
stopping the share task.

• DataExtracted – This is optional for extended shares to
optimize resource usage of the system. Applications should
report this if they have finished extracting data from the
Data Package.

• SubmittedToBackgroundManager – This is optional for
extended shares to optimize resource usage of the system.
Applications should report this if they have handed off the
remainder of the share task to the Background Manager.
An example is the Upload APIs.

SetExtendedShareDisplayText The target application can call this while it is running to modify the
string that is displayed in the background progress window. This is
how an application can call the user’s attention to take action in
their application.

Windows.UI.Immersive.ShareTarget.QuickLinkInfo Object
Property Description
Title The title string to display in the UI for the quicklink.
Description In M2, there was a description string displayed in the UI.
Thumbnail This is a string that represents a thumbnail resource, either as a file

or resource reference. (e.g. “c:\pictures\mythumbnail”)
TargetId This is a string that your application will be passed back when a user

chooses this QuickLink in the future.

Elements of Mosh: the developer story Page 149 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

SupportedDataPackageFormats A list of supported data package formats that this quicklink
supports.

SupportedFileExtensions A list of supported file extensions that this quicklink supports.

4.11.3 SAMPLE JAVASCRIPT CODE

The following code runs on the source app.

// Simple sharing scenario
var dtm =
Windows.UI.Immersive.DataTransfer.DataTransferManager.getForCurrentView();
dtm.addEventListener("datarequested", function (ev) {
 // Populate the data package properties
 ev.request.data.properties.title = "Title"; // required
 ev.request.data.properties.description = "Description"; // optional

 // Populate data package format(s), this is sharing a text item
 ev.request.data.setText("http://www.buildwindows.com");
});

The following code runs on the target app.

// This is the sharing contract entry point
var shareCtx;
function onShareTargetActivated(e) {
 shareCtx = e.shareTargetActivationContext;
}

function onShareSubmit(e) {
 var dp = shareCtx.data; //get the shareable item
 if
(dp.contains(Window.ApplicationModel.DataTransfer.StandardDataFormats.stor
ageItems)) { //if the data is a set of files
 dp.getStorageItemsFormatAsync().then(function (storageItems) {
 for (var i = 0, l = storageItems.length; i < l; ++i) {
 var blob =
windows.msBlobHelper.createBlobFromStorageItem(storageItems[i]);
 uploadToServer(blob);
 }
 shareCtx.reportCompleted(null); //report successful
completion, but do not include a quicklink
 });
 }
}

4.11.4 REFERENCES

1. Share M3 User Experience Functional Spec

Elements of Mosh: the developer story Page 150 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

2. Share M3 Platform Functional Spec
3. Share API Review Doc
4. Building an application using share – UX guidance
5. Code Samples

4.12 SETTINGS CHARM - APPLICATION SETTINGS

The settings charm is great at providing users with fast, in-context access to settings that affect the
current immersive app experience. These settings always include

• Commonly accessed system settings applicable in any context
• Settings and information applicable to the application that the system exposes

If the application participates in the settings contract they also include application specified settings
commands that launch an application defined settings UI.

Exposing settings commands in the settings charm gives developer a unique chance to integrate with
Windows top level UI and provide access to their settings UI at all time without scarifying application
real estate or having to build navigation to and from a setting page.

4.12.1 USER EXPERIENCE

With an immersive application running the user can invoke the settings charm via the charms bar or

with the keyboard by pressing key + I. The settings charm window appears docked on the right edge
of the screen and comprises two panes:

• The app pane, occupying the top part of the settings charm window, contains information and
option scoped to the current immersive app or supported system surface

o App ID block provides identification for the app or system surface
o If the app has opted in the settings contract the app settings commands provide access to

second level UI where the app settings are exposed
o The system access link provides information and control on the system capabilities and

devices that the app can use
• The system pane, occupying the bottom part of the settings charm window, provides access to

settings and functionality that are scoped to the whole system

Elements of Mosh: the developer story Page 151 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

When the user selects one of the app defined settings commands, the settings charm closes and the app
defined settings UI associated with that command appears.

4.12.2 OVERVIEW OF THE APPLICATION SETTINGS CONTRACT

Elements of Mosh: the developer story Page 152 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

For the settings charm to expose application settings commands the application must implement the
settings contract. Thus, for an application, participating in the settings contract means:

• the application has specified some settings commands to be exposed in the settings charm
• the application shows the settings UI it has defined in response to the user selecting any of these

settings commands

Adding settings command is done by

1. instantiating a SettingsPane object
2. adding settings commands to the SettingsPane object applicationCommands vector.

a. These settings command can be predefined. “Account”, “Preferences”, “About”, “Help”
and “Terms of use” are available and accessible as static properties off the SettingsPane
object

b. These command can be custom by specifying a name, and ID and an image for the
settings command

c. Adding settings command is typically done at application start but can also be done
dynamically in reaction to the settingsopening event.

3. An event handler must be specified in the constructor for the settings commands

Showing the settings UI requires

1. That the application implements the event handlers specified when adding the settings
command

2. The appropriate settings UI gets shown in reaction to the event associated with the settings
command

4.12.3 APPLICATION SETTINGS UI RECOMMENDATIONS

Settings commands

• Use predefined settings commands as much as possible
• Expose the same settings commands regardless of app context
• Contextualize the content if you need, not the type of UI launched
• Always open a second level UI from a settings command (no top level command without visual

feedback)
• Don’t use a settings command to provide commands used as part of a typical app workflow (e.g.

changing the paint color in a Painter app)
• Don’t use a settings command to navigate to a destination in the app (causing the user to have

to navigate back)

Settings UI

While the surface in which the settings UI is displayed is at the discretion of the app there is a strong
preference for a light dismiss surface visually coming from the settings charm*.

Elements of Mosh: the developer story Page 153 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

* We will be providing a WWA control to host settings UI as a M3 DCR.

1. Make settings instant commit where possible

2. Avoid lateral navigation: use back button navigation as provided

3. Aim for simplicity consistency, align with other apps

4. Use the style sheet where possible and avoid custom controls

5. Keep it flat: Avoid more than 2 levels for the panel

6. Lay out content top to bottom in a single column

1. Decrease the number of settings where possible, keep it simple

2. Use a second level or an expand/collapse model as appropriate for the content

3. Combine less important content into a single entry point so more important content can
be split across the other entry points

7. Consider going full screen when an explicit dismiss is required, but return to the settings panel
upon explicit dismiss

4.12.4 SAMPLE JAVASCRIPT CODE

The following code demonstrates adding Preferences and Help to the settings charm and capturing the
associated events:

function addSettingsCommands() {
var settingsSample = Windows.UI.Immersive;
var vector = null;
vector = settingsSample.SettingsPane.applicationCommands;

//Ensure no settings commands are currently specified in the settings
charm
if (vector == null) {
 alert("vector is null");
 }
vector.clear();

var commandPreferences;
try {
 commandPreferences = new
settingsSample.SettingsCommand(settingsSample.SettingsCommand.preferences,
scenario2OnPreferences);
 } catch (e) {
 alert("Error calling
settingsSample.SettingsCommand(settingsSample.SettingsCommand.preferences,
scenario2OnPreferences): " + e);
 }

Elements of Mosh: the developer story Page 154 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

try {
 vector.append(commandPreferences);
 } catch (e) {
 alert("Error calling vector.append(commandPreferences): " + e);
 }

var commandHelp;
try {
 commandHelp = new
settingsSample.SettingsCommand(settingsSample.SettingsCommand.help,
scenario2OnHelp);
 } catch (e) {
 alert("Error calling
settingsSample.SettingsCommand(settingsSample.SettingsCommand.help,
scenario2OnHelp): " + e);
 }

try {
 vector.append(commandHelp);
 } catch (e) {
 alert("Error calling vector.append(commandHelp): " + e);
 }
 }

function scenario2OnPreferences() {
 alert("Preferences settings command selected.");
}

function scenario2OnHelp() {
 alert("Help settings command selected.");
}

4.12.5 REFERENCES

1. Settings Charm - M3 PM Spec.docm
2. Settings API Review Doc
3. Settings DDI doc
4. Settings UI rollout presentation
5. SettingsTestApp

4.13 FILE PICKER

The File Picker is a Windows control that primarily provides open, save, and location picking
functionality to applications. The File Picker APIs provide a way for developers to access files and folders
across the local system, HomeGroup, devices, UNC, and applications. There are three primary modes:
File, Save, and Folder.

Elements of Mosh: the developer story Page 155 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

File Mode:

Elements of Mosh: the developer story Page 156 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Save Mode:

Folder Mode:

Elements of Mosh: the developer story Page 157 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.13.1 THE FILE PICKER SYSTEM FLOW

To open an item:

1. The User launches a MoSh application.
2. The MoSh application launches the File Picker
3. The application creates an IFileOpenPicker object, calls the appropriate methods, and specifies

the necessary properties on the object.
4. The user navigates and selects the desired files or folders. Note that the File Picker does not

send callbacks to the application during picking.
5. When the user makes a selection, the associated StorageFile objects are handed back to the

calling application.

To save an item:

1. The user launches a MoSh application.
2. The MoSh application launches the File Picker to save a file to a location
3. The application creates an IFileSavePicker object, calls the appropriate methods, and specifies

the necessary properties on the object.
4. The user navigates and specifies the desired file name and type. Note that the File Picker does

not send callbacks to the application while saving.
5. After the user confirms the save, the specified file is created in the specified location.

Three main interfaces expose the File Picker to the public: IFilePicker, IFileOpenPicker, and
IFileSavePicker. IFileOpenPicker requires IFilePicker, and IFileSavePicker requires IFilePicker.

IFilePicker contains methods common in both open and save cases. IFileOpenPicker contains methods
only applicable to open scenarios, and IFileSavePicker contains methods only applicable to save
scenarios.

4.13.2 WINRT API DETAILS
IFileOpenPicker
Method Description
PickSingleFileAsync Displays the File Picker in single-select mode.
PickMultipleFilesAsync Displays the File Picker in multi-select mode.
Property Description
ViewMode Determines the view mode of the File Picker (List or Thumbnail)
SettingsIdentifier Assigns an identifier for a persisted state of the File Picker. Use this

identifier to disambiguate between multiple File Picker instances in an
application.

SuggestedStartLocation Suggests a starting location (via PickerLocationID) if a File Picker location

Elements of Mosh: the developer story Page 158 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

has not yet been persisted (via the SettingsIdentifier or the user already
used the File Picker in that application).

CommitButtonText Customizes the commit text in the File Picker.
FileTypeFilter The File Picker filters the view contents and App-to-App picking locations

based off of the extensions specified. This is a required property.

IFileSavePicker
Method Description
PickSaveFileAsync Displays the File Picker in save mode.
Property Description
SettingsIdentifier Assigns an identifier for the persisted state to a File Picker. Use this

identifier to disambiguate between multiple File Picker instances in an
application.

SuggestedStartLocation Suggests a starting location (via PickerLocationID) if a File Picker
location has not yet been persisted (via the SettingsIdentifier or the
user already used the File Picker in that application).

CommitButtonText Customizes the commit text in the File Picker.
FileTypeChoices Set of file types (extensions) that the calling application can save as.
DefaultFileExtension Specifies a default file type that already exists in FileTypeChoices. If

this property is not set, the default file type is the first file type
specified in FileTypeChoices.

SuggestedSaveFile Enables applications to take a StorageFile obtained through open or
some other means and send it to the File Picker for a Save As…
experience that selects the specified file.
This property has priority over SuggestedSaveFileName.

SuggestedSaveFileName Suggests a file name to the user.

IFolderPicker
Method Description
PickSingleFolderAsync Displays the File Picker in folder mode.
Property Description
ViewMode Determines the view mode of the File Picker (List or Thumbnail)
SettingsIdentifier Assigns an identifier for the persisted state to a File Picker. Use this

identifier to disambiguate between multiple File Picker instances in an
application.

SuggestedStartLocation Suggests a starting location (via PickerLocationID) if a File Picker location
has not yet been persisted (via the SettingsIdentifier or the user already

Elements of Mosh: the developer story Page 159 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

used the File Picker in that application).
CommitButtonText Customizes the commit text in the File Picker.
FileTypeFilter The File Picker filters the view contents and App-to-App picking locations

based off of the extensions specified. This is a required property.

4.13.3 SAMPLE JAVASCRIPT CODE

The following example creates a FileOpenPicker.

var openpicker = new Windows.Storage.FileOpenPicker();
openpicker.fileTypeFilter.replaceAll([".docx", ".doc"]);
openpicker.pickSingleFileAsync().then(function(file) {
 if (file) {
 DoSomething(file);
 }
});

The next example creates a FileSavePicker.

var savepicker = new Windows.Storage.FileSavePicker();
savepicker.fileTypeChoices.insert("JPEG File", [".jpeg", ".jpg"]);
savepicker.fileTypeChoices.insert("PNG File", [".png"]);
savepicker.pickSaveFileAsync().then(function (file) {
 if (file) {
 SaveFileTo(file);
 }
});

The last example creates a FolderPicker.

var picker = new Windows.Storage.FolderPicker();
picker.fileTypeFilter.replaceAll([".html", ".htm"]);
picker.pickSingleFolderAsync().then(function (folder) {
 if (folder) {
 DoSomethingWithFolder(folder);
 }
});

4.13.4 REFERENCES

1. File Picker Functional Spec
2. File Picker Dev Design
3. File Picker API Summary
4. File Picker Test Harness Instructions
5. MoSh App Data Model API Review

Elements of Mosh: the developer story Page 160 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.14 FILE PICKER EXTENSION

The optional File Picker extension category enables an application to make itself available in the File
Picker (open mode only) as a hosted app where its contents are made available to the app that invoked
the File Picker.

Figure 1: An application participating in the File Picker extension

File Picker extensions provide the following benefits:

• Provides users with the freedom and flexibility to choose files that are stored and presented by
applications.

• Provides a more accurate and complete picture of where data is stored.
• Provides a simple and consistent way to bring external items into an application.
• Enables applications to participate in additional user scenarios as a source of content.
• Can make an app more popular and encourage adoption.

The calling app is the application that originally invoked the File Picker and receives the picked items.
This application is occluded while the File Picker is displayed and is largely uninvolved in the File Picker
extension scenario, except as the ultimate endpoint of the data.

Elements of Mosh: the developer story Page 161 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The hosted app is the application that has been selected by the user as a source of items to pick. This
application is displayed non-modally inside the File Picker’s UI, filling the “view” area of the File Picker.
The File Picker interacts with this application programmatically to determine which items the user has
selected. The File Picker extension APIs are only used by the hosted app to interact with the File Picker’s
Basket. The calling app uses the File Picker APIs (described in the preceding section) to retrieve items.

Apps declare supported file types (via file extensions) in their manifest. The calling app specifies which
types of files it wants to open using the File Picker API. Hosted apps are filtered to show those that
support at least one of the specified types. Apps may also specify that they support any type.

The following illustration shows a calling app invoking the File Picker through a browse for files button.

After picking some local items, user changes to a hosted app that’s registered as a File Picker extension:

Elements of Mosh: the developer story Page 162 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The hosted app’s UI is shown and users can pick additional items:

4.14.1 HOSTED APP

The hosted app picking flow executes as follows:

1. When the user switches to a hosted app in the File Picker, a hosted window is created and the
hosted app displays its UI within that window. A splash screen for the hosted app is also shown.

Elements of Mosh: the developer story Page 163 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

2. The hosted app is shown within the File Picker’s window, filling up the view portion of the UI,
but leaving the File Picker’s Navigation and Basket areas available for user interaction. As the
user selects items in the hosted app, the hosted app uses its item selection method to populate
the File Picker’s Basket and indicate what’s been selected.

3. If the user removes an item from the File Picker’s Basket, the hosted app receives an event it can
use to update its UI to show that the item has been deselected.

4. The user commits the selection and the files that have been added to the File Picker’s Basket by
the hosted app are returned to the calling app.

4.14.2 WINRT API DETAILS
Windows.ApplicationModel.Activation.FilePickerActivatedEventArgs
Method Description
Basket This property provides access to the FilePickerBasket object that the

application can use to interact programmatically with the FilePicker that it
is hosted in to add/remove files from the Basket, etc.

Windows.Storage.FilePickerBasket
Method Description
AddFile When the user selects an item in the application’s view, the application

calls this method to add the item to the File Picker’s Basket.
CanAddFile An application hosted in the File Picker can determine whether a given

file would be allowed in the Basket for the current File Picker session by
calling this method. For example, if the calling app specified .jpg and .png
as the file types to pick, a .bmp file would not be allowed in the Basket.

ContainsFile This method enables an application hosted in the File Picker to determine
whether a file is presently contained in the Basket.

RemoveFile When the user deselects an item in the application’s view, the application
calls this method to remove the item to the File Picker’s Basket.

AllowedFileTypes Returns a list of file types (extensions) supported by the active instance of
the File Picker. The value ‘*’ anywhere in the list indicates that files of
any type may be added to the Basket.

Title Sets or retrieves the title displayed in the File Picker’s UI to identify the
current context of the hosted application.

Event Description
FileRemoved This event is raised by the File Picker when an item is removed from the

Basket by the user.
FileRemovedEventHandler Defines the delegate interface that an application should implement to

receive FileRemoved events.

Windows.Storage.FileRemovedEventArgs

Elements of Mosh: the developer story Page 164 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Property Description
Id This property contains the application-defined identifier of the file that

was removed from the Basket. The value corresponds to the identifier
provided by the application when the file was added to the Basket via
FilePickerBasket.AddFile.

4.14.3 SAMPLE JAVASCRIPT CODE

var basket;
var myItems; // populated with items by the application (app-defined
object type)
function activatedHandler(e) { // registered handler for
Windows.UI.WebUI.WebUIApplication.Activated event
 if (e.contractId === "Windows.FilePicker")
 {
 basket = e.basket;
 basket.addEventListener("fileremoved", function (sender, e) {
myItems[e.id].selected = false; });
 e.handled = true;
 }
}

function myOnItemTouched(item) {
 if (basket.addFile(item.id, item.file) ===
Windows.Storage.AddFileToBasketResult.AddedToBasket) { // item.file is a
Windows.Storage.StorageFile object
 item.selected = true;
 }
}

4.14.4 REFERENCES

1. App-to-App Picking Functional Spec
2. App-to-App Dev Design
3. App-to-App API Spec
4. App-to-App API Summary

4.15 FILE SYSTEM BROKER

This contract enables MoSh apps to access user content by picking files or folders through the MoSh
Item Picker or by programmatically selecting files or folders. All programmatic access APIs are brokered
through the File Broker to provide safe programmatic access for Application Container apps.

Elements of Mosh: the developer story Page 165 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The file broker is a medium integrity level process that acts as an intermediary between an Application
Container app and user content. It intercepts calls for file access to returns IStorageItem objects back to
the app.

By default, apps to not have access to files or folders; they must declare capabilities to gain access. Apps
may request access to the following folders by declaring capabilities in the package manifest:

• Music Library (Local and HomeGroup)
• Pictures Library (Local and HomeGroup)
• Videos Library (Local and HomeGroup)
• Recorded TV Library (Local and HomeGroup)
• Documents Library (Local and HomeGroup)

• Must also specify supported file types
• The HomeGroup root node
• Removable Devices

Applications need to specify file types for the Documents Library and Removable Devices locations in the
manifest. Users can grant access to additional locations by using the Picker, even if that app doesn’t
have file access capabilities.

4.15.1 THE FILE ACCESS SYSTEM FLOW

1. The app declares file access capabilities in its manifest.

Elements of Mosh: the developer story Page 166 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

2. When the app runs, SIDs, Security Identifiers, that map to the capabilities (Capability SIDs) and a
Package SID are applied to the process.

3. Apps request access to files within a location using the WinRT API.
4. The file broker intercepts the call and invokes the AccessCheck method.
5. The AccessCheck method uses SID values to determine whether the app has access.
6. If the file broker access check is successful, the file broker returns an IStorageItem

(IStorageFile/IStorageFolder) to the app.

4.15.2 WINRT API DETAILS
StorageFolder
Covers APIs for a storage folder (or StorageFolder) storage item object, which can also be referred to as
a storage folder namespace. The storage folder namespace is “Windows.Storage.StorageFolder”.
Method Description
createFileAsync() Creates a file within the current StorageFolder storage item object.
createFolderAsync() Create a folder within the current StorageFolder storage item object.
getIndexedStateAsync() Function to determine if the current StorageFolder storage item object

represents a location which has its items’ properties stored in a database
for faster property retrieval.

areQueryOptions
Supported
(QueryOptions)

Checks, and returns an indication of whether, the passed query options can
be applied to the current StorageFolder storage item object.

isCommonFileQuery
Supported
(CommonFileQuery)

Checks, and returns an indication of whether, the passed common file
query options (one or more options pre-defined for application use) can be
applied to the current StorageFolder storage item object.

isCommonFolder
QuerySupported
(CommonFolderQuery)

Checks, and returns an indication of whether, the passed common folder
query options (one or more options pre-defined for application use) can be
applied to the current StorageFolder storage item object.

getFileAsync(name) Function to perform a single file retrieval.
getFolderAsync(name) Function to perform a single folder retrieval.
getItemAsync(name) Function to perform a single file or folder retrieval.

StorageFile
Illustrates APIs for a storage file (or StorageFile) storage item object. The storage file namespace is
“Windows.Storage.StorageFile”.
Method Description
fileName The name of the file represented by the current StorageFile

storage item object.
fileType The item type (e.g., picture, video, document) of the file

represented by the current StorageFile storage item object.
openAsync Opens a random access stream for consumption, allowing

the data for the file represented by the current StorageFile
storage item object to be provided to the isolated

Elements of Mosh: the developer story Page 167 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

application for both read and write.
openForReadAsync Opens an input stream allowing the isolated application to

read data for the file represented by the current StorageFile
storage item object.

copyAsync
(destinationFolder,
 newFileName,
 nameCollisionOption)

Copy a single file to a new location specified by
destinationFolder. The name of the new file can optionally
be specified as newFileName, and collision options (e.g.,
how to resolve collisions/duplicates in file names) can
optionally be specified as nameCollisionOption.

copyAndReplaceAsync(fileToReplace) Copy a single file represented by the current StorageFile
storage item object to a specified location, and overwrite the
file at that specified location.

moveAsync
(destinationFolder,
 newFileName,
 nameCollisionOption)

Move a single file to a new location specified by
destinationFolder. The name of the new file can optionally
be specified as newFileName, and collision options (e.g.,
how to resolve collisions/duplicates in file names) can
optionally be specified as nameCollisionOption.

moveAndReplaceAsync(fileToReplace) Move a single file represented by the current StorageFile
storage item object to a specified location, and overwrite the
file at that specified location.

Known Folders
Illustrates APIs for a known folders namespace, which refers to a particular set of pre-defined set of
folders or libraries of a file system item source that can be accessed by AppContainers. The known
folders namespace is “Windows.Storage.KnownFolders”.
Method Description
musicLibrary Returns a storage item object representing a Music Library folder,

including identification of files stored in the Music Library folder.
picturesLibrary Returns a storage item object representing a Pictures Library folder,

including identification of files stored in the Pictures Library folder.
videosLibrary Returns a storage item object representing a Videos Library folder,

including identification of files stored in the Videos Library folder.
recordedTVLibrary Returns a storage item object representing a Recorded TV Library

folder, including identification of files stored in the Recorded TV
Library folder.

documentsLibrary Returns a storage item object representing a Documents Library
folder, including identification of files stored in the Documents
Library folder.

homeGroup Returns a storage item object representing a Homegroup folder,
including identification of files stored in the Homegroup folder.

removableDevices Returns a storage item object representing a Removable Devices
folder, including identification of files stored in the Removable
Devices folder.

mediaServerDevices Returns a storage item object representing a Media Server Devices

Elements of Mosh: the developer story Page 168 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

folder, including identification of files stored in the Media Server
folder.

Retrieve particular files/folders
Illustrates APIs to store or retrieve particular files or folders. The storage namespace is
“Windows.Storage”.
Method Description
DownloadsFolder Returns a storage item object representing a Downloads folder,

including identification of files stored in the Downloads folder.
getFileFromPathAsync(path) Returns a StorageFile storage item object from the location specified

by the given path.
getFileFromUriAsync(uri) Returns a StorageFile storage item object from the location specified

by the given URI.
createFileForTransferAsync() Returns a storage item object that is a Transfer File (a temporary

StorageFile storage item object to which streamed data can be
subsequently written).

getFolderFromPathAsync() Returns a StorageFolder storage item object from the location
specified by the given path

Operations
Illustrates APIs for a storage item object, which can also be referred to as a storage item namespace.
The storage item namespace is “Windows.Storage.StorageItem”.
Method Description
getThumbnailAsync() Function to get the thumbnail of the item represented by the

current storage item object.
renameAsync() Function to change the name of the item represented by the

current storage item object to a name specified by the isolated
application.

deleteAsync() Function to delete the item represented by the current storage
item object.

isOfType() Function to check whether the current storage item object is a
StorageFile storage item object or StorageFolder storage item
object.

name The name of the item represented by the current storage item
object.

size The size (e.g., in bytes) of the item represented by the current
storage item object.

displayType The item type (e.g., picture, video, document) of the item
represented by the current storage item object, formatted for
consumption by the user.

contentType The item type (e.g., picture, video, document) of the item
represented by the current storage item object.

Elements of Mosh: the developer story Page 169 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

path A path identifying where the item represented by the current
storage item object is located.

attributes Attributes of the item represented by the current storage item
object maintained by the item source.

dateModified A date that the item represented by the current storage item
object was most recently modified.

dateCreated A date that the item represented by the current storage item
object was created.

folderRelativeId An identifier that can be used to uniquely identify an item
relative to its parent folder.

ExtraProperties Additional "System" properties of the item represented by the
current storage item object that are maintained by the item
source and can be retrieved.

getMusicPropertiesAsync() Function to retrieve music-specific properties of an item of a
music item type that are accessible via an asynchronous
(async) call.

getVideoPropertiesAsync() Function to retrieve video-specific properties of an item of a
music item type that are accessible via an asynchronous call.

getImagePropertiesAsync() Function to retrieve picture- or image-specific properties of an
item of a music item type that are accessible via an
asynchronous call.

getDocumentPropertiesAsync() Function to retrieve document-specific properties of an item of
a music item type that are accessible via an asynchronous call.

Query options
Illustrates APIs for query options to specify query options for search requests. The namespace is
“Windows.Storage.QueryOptions”.
Method Description

fileTypeFilter
Adds a file extension filter to the query to specify particular file
extension types to be searched for.

folderDepth
Specifies whether the query is deep or shallow (e.g., whether sub-
folders are to be searched)

applicationSearchFilter Adds an AQS search filter to the query.
userSearchFilter Adds a second AQS search filter to the query.
searchLocale

Specifies the search locale (e.g., item source or location of an item
source) of the query.

indexerOption

Specifies whether only locations that are “indexed” (have their item
properties cached in a database) should be queried.

sortOrder

Adds an "OrderBy" sort to the query, specifying a particular order for
arranging the storage item objects returned by the search.

stackPropertyName

Adds a "GroupBy" shape to the query, specifying a particular grouping
for arranging the storage item objects returned by the search.

Elements of Mosh: the developer story Page 170 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

dateStackOption

For items grouped by date, indicates if the grouping should be by day,
month, year, etc.

saveToString()

Function to save the query options to a string to handle tombstoning
(e.g., forced suspension of the isolated application, such as to reduce
power consumption).

loadFromString(string)

Function to load the query options from a string to handle
tombstoning (e.g., forced suspension of the isolated application, such
as to reduce power consumption).

Query
Illustrates APIs for a set of interfaces allowing isolated applications to submit queries or searches for
items. The query namespace is “Windows.Storage”.
Method Description
StorageQueryResultBase.
contentsChanged

Event that is fired when the file item contents behind a query have
changed.

StorageQueryResultBase.
optionsChanged

Event that is fired when the query options for a query have been
changed.

StorageQueryResultBase.
findStartIndexAsync()

Allows the app to look up the index of the first item that
corresponds to the provided
value of the first sort order property.

StorageQueryResultBase.
getCurrentQueryOptions()

Function to retrieve the current query options of the current query.

StorageQueryResultBase.
applyNewQueryOptions(
 queryOptions)

Function to apply new query options specified as queryOptions to
the current query.

StorageQueryResultBase.
getItemCountAsync()

Function to get the number of items behind (satisfied by) a query.

StorageFileQueryResult.
getFilesAsync()

Function to retrieve files satisfied by a query.

StorageFileQueryResult.
getFilesAsync(start, count)

Function to retrieve from a query a number of files specified by
count and beginning at an index specified by start.

StorageFolderQueryResult.
getFoldersAsync()

Function to retrieve folders satisfied by a query.

StorageFolderQueryResult.
getFoldersAsync(start, count)

Function to retrieve from a query a number of folders specified by
count and beginning at an index specified by start.

StorageItemQueryResult.
getItemsAsync()

Function to retrieve items satisfied by a query

StorageItemQueryResult.
getItemsAsync(start, count)

Function to retrieve from a query a number of items specified by
count and beginning at an index specified by start.

Elements of Mosh: the developer story Page 171 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Fast Accessors
Illustrates APIs for fast accessors hich is a set of interfaces allowing items to be retrieved (e.g., quickly,
without specifying an AQS query). The APIs can support retrieving items in different ways, such as a
shallow mode (e.g., returning results from a particular folder or directory), a deep mode (e.g., returning
results from a particular folder or directory as well as all sub-folders or sub-directories), and so forth.
The quick accessors namespace is “Windows.Storage.StorageFolder”.
Method Description
getFilesAsync() Retrieve files arranged in a by-folder grouping.
getFiles(CommonFileQuery)
 Retrieve files using the passed common file query options.
getFiles(CommonFileQuery,
start, count)

Retrieve, using the passed common file query options, a number of
files specified by count and beginning at an index specified by start.

getFoldersAsync() Retrieve folders arranged in a by-folder grouping.
getFoldersAsync(
 CommonFolderQuery) Retrieve folders using the passed common folder query options.
getFoldersAsync(
 CommonFolderQuery, start,
 count)

Retrieve, using the passed common folder query options, a number
of folders specified by count and beginning at an index specified by
start.

getItemsAsync() Retrieve files and folders arranged in a by-folder grouping.

getItemsAsync(start, count)

Retrieve, arranged in a by-folder grouping, a number of files and
folders specified by count and beginning at an index specified by
start.

Queries
Illustrates APIs for a query creation namespace, which is a set of interfaces allowing queries to be
created by isolated applications. Once created, these queries can be maintained by the broker module
and subsequently accessed by the appContainers creating the query. The query creation namespace is
“Windows.Storage.StorageFolder”.
Method Description
createFileQuery() Creates a query with files arranged in a by-folder grouping.
createFileQuery(
 CommonFileQuery)

Creates a file-only query using the passed common file query
options.

createFileQueryWithOptions(
 QueryOptions)

Creates a file-only query with query options specified by the
isolated application.

createFolderQuery()
 Creates a query with folders arranged in a by-folder grouping.
createFolderQuery(
 CommonFolderQuery)

Creates a folder-only query using the passed common folder query
options.

createFolderQueryWith
Options(QueryOptions)

Creates a folder-only query with query options specified by the
isolated application.

createItemQuery()

Creates a query with files and folders arranged in a by-folder
grouping.

createItemQueryWithOptions(Creates a file and folder query with query options specified by the

Elements of Mosh: the developer story Page 172 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 QueryOptions) isolated application

Storage Item Persistance
Illustrates APIs for a set of interfaces allowing AppContainers to persist storage items. Storage item
objects can be persisted across multiple executions of an isolated application. The storage item
persistence namespace is “StorageApplicationPermissions.futureAccessList”.
Method Description

add(storageItem, metadata)

Adds the specified storage item object to the persisted access list,
and returns a token to the isolated application allowing the
persisted storage item object to be subsequently retrieved. The
isolated application can optionally specify, as metadata, metadata
to be linked to the persisted storage item object.

addOrReplace(token,
 storageItem)

Adds the specified storage item object to the persisted access list as
with add(), but also provides the ability to replace any existing
persisted access list entry corresponding to the token. The isolated
application can optionally specify, as metadata, metadata to be
linked to the persisted storage item object.

getItemAsync(token)
Get the persisted storage item object specified by the token from
the persisted access list.

getFileAsync(token)
Get the persisted StorageFile storage item object specified by the
token from the persisted access list.

getFolderAsync(token)
Get the persisted StorageFolder storage item object specified by
the token from the persisted access list.

remove(token)
Remove the persisted storage item object specified by the token
from the persisted access list.

containsItem(token)
Check, and return an indication of, whether the storage item object
specified by the token is present in the persisted access list.

clear()
Clears the access list, removing all persisted storage item objects
from the persisted access list.

checkAccess(storageItem)

Check, and return an indication of, whether the isolated application
has access to the specified storage item object (e.g., through a
capability or because the item or parent is persisted).

entries
Retrieves the entire set of persisted storage item objects in the
persisted access list.

maximumItemsAllowed

Retrieves the maximum number of storage item objects that are
permitted to be persisted in the persisted access list.

Most Recently Used (MRU)
Illustrates APIs for a most recently used (MRU) list, which is a set of interfaces allowing AppContainers
to generate and maintain a list of most recently used items. The MRU list is an example of persisted
storage item objects, with the persisted access list being the MRU list. The MRU list namespace is
“StorageApplicationPermissions.mostRecentlyUsedList”.
Method Description
add(storageItem, metadata) Adds the specified storage item object to the MRU list, and returns

Elements of Mosh: the developer story Page 173 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 a token to the isolated application allowing the persisted storage
item object to be subsequently retrieved. The isolated application
can optionally specify, as metadata, metadata to be linked to the
persisted storage item object.

addOrReplace(token,
storageItem)

Adds the specified storage item object to the MRU list as with add(),
but also provides the ability to replace any existing MRU list entry
corresponding to the token. The isolated application can optionally
specify, as metadata, metadata to be linked to the persisted storage
item object.

getItemAsync(token)
Get the persisted storage item object specified by the token from
the MRU list.

getFileAsync(token)
Get the persisted StorageFile storage item object specified by the
token from the MRU list.

getFolderAsync(token)
Get the persisted StorageFolder storage item object specified by
the token from the MRU list.

remove(token)
Remove the persisted storage item object specified by the token
from the MRU list.

containsItem(token)
Check, and return an indication of, whether the storage item object
specified by the token is present in the MRU list.

clear()
Clears the MRU list, removing all persisted storage item objects
from the MRU list.

checkAccess(storageItem)

Check, and return an indication of, whether the isolated application
has access to the specified storage item object (e.g., through a
capability or because the item or parent is persisted).

entries

Retrieves the entire set of persisted storage item objects in the
MRU list.

maximumItemsAllowed

Retrieves the maximum number of storage item objects that are
permitted to be persisted in the MRU list.

4.15.3 SAMPLE JAVASCRIPT CODE

This example shows how to access and read all the files in the Music Library sorted by Atrist, Album,
Track and walking the list:

var library = Windows.Storage.KnownFolders.musicLibrary;
library.getFilesAsync(Windows.Storage.CommonFileQuery.orderByMusicInfo).th
en(function(files) {
 files.forEach(function(file) {
 doSomething(file);
 });
});

The next example shows how to search and enumerate the results.

Elements of Mosh: the developer story Page 174 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

var options = new
Windows.Storage.QueryOptions(Windows.Storage.CommonFileQuery.orderBySearch
Rank);
options.applicationSearchFilter = "(wedding OR reception) AND kind:photo";
options.searchLocale = "en-us";
var queryResult =
Windows.Storage.KnownFolders.picturesLibrary.createItemQueryWithOptions(op
tions);
queryResult.getItemsAsync().then(function(items) {
 items.forEach(function(item) {
 if (item.isOfType(Windows.Storage.StorageItemTypes.folder)) {
 myAddItemInFolderToSlideshow(item);
 } else if (item.isOfType(Windows.Storage.StorageItemTypes.file)) {
 myAddItemToSlideshow(item);
 }
 });
});

This code example enumerates a photo collection and displays the photos’ thumbnails and filenames,
organized in a year/month/list hierarchy:

var library = Windows.Storage.KnownFolders.picturesLibrary;

library.getFoldersAsync(Windows.Storage.CommonFolderQuery.groupByYear).the
n(function(yearList) {
 yearList.forEach(function(yearFolder) {
 var yearName = yearFolder.name;

yearFolder.getFoldersAsync(Windows.Storage.CommonFolderQuery.groupByMonth)
.then(function(monthList) {

 monthList.forEach(function(monthFolder) {
 var monthName = monthFolder.name;

 monthFolder.getFilesAsync().then(function(files) {
 files.forEach(function(file) {
 file.getThumbnailAsync().then(function(thumbnail)
{
 // Do something with thumbnail...
 });
 });
 });
 });
 });
 });
});

4.15.4 REFERENCES

Elements of Mosh: the developer story Page 175 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1. File Broker API Doc
2. File Broker Functional Spec
3. File Broker Dev Design

4.16 CONNECT – PRINT

The Connect Charm enables the user to extend the modern Windows experience through devices. The
Connect Charm is a user experience hosted by the Charms Bar in the Edgy window. The Connect Charm
is invoked by activating the Charms Bar through interaction with Edgy, then selecting the Connect
Charm from the Charms Bar. Selection launches a flyout that provides quick access to device-related
activities.

The Print application contract enables developers to use the Print button on the Connect Charm to print.
In response to the button click, the developer can invoke the Windows print experience or provide a
custom experience. This contract only has a source application component.

The source application is the active MoBody application; it is this application that responds to the Print
button click.

Figure 4: The Connect Charm

Elements of Mosh: the developer story Page 176 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Figure 5: An app participating in the Print contract

4.16.1 THE PRINT SOURCE APP CONTRACT

The Print contract is optional in several ways. A source app may decline to opt-in to the Print button on
the Connect Charm, in which case the Connect Charm will never show the Print button for that app. In
such a case, the app may nonetheless support printing, even using the Windows Print experience,
because printing is an activity that an app can perform entirely within its own process. If the source app
opts-in to the Print button on the Connect Charm, the app may inform the Connect Charm on demand
that it is not able to Print at the moment, in which case the Print button will not be displayed on the
Connect Charm.

The Print flow executes as shown in the following illustration.

Elements of Mosh: the developer story Page 177 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Figure 6: The Print flow

4.16.2 SAMPLE JAVASCRIPT CODE

Note that the print contract isn’t available in PDC-4. However, the Window.Print method is available.

4.16.3 REFERENCES

1. Print Dev Spec

4.17 CONNECT - PLAYTO

The PlayTo contract enables developers to use the PlayTo button on the Connect Charm to invoke
remote-play behavior. In response to the button click, the application can invoke the Windows PlayTo
experience or provide a custom PlayTo experience. This contract only has a source application
component.

The source application is the active MoBody application; it is this application that may respond to the
PlayTo button click on the Connect Charm.

Elements of Mosh: the developer story Page 178 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Figure 9: The Connect Charm showing the PlayTo button

Figure 10: The PlayTo device picker

Elements of Mosh: the developer story Page 179 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.17.1 THE PLAYTO SOURCE APP CONTRACT

The PlayTo contract enables developers to use the PlayTo button on the Connect Charm to invoke
remote-play behavior. In response to the button click, the application can choose to participate in the
Windows PlayTo experience. This contract only has a source application component.

The source application is the active MoBody application; it is this application that may respond to the
PlayTo button click on the Connect Charm.

The PlayTo flow executes as shown the following illustration:

Elements of Mosh: the developer story Page 180 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Elements of Mosh: the developer story Page 181 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Figure 7: The PlayTo flow

4.17.2 WINRT API DETAILS
PlayToManager Object
Property Description
None
Events Description
SourceRequested Raised when the user has started opening the Connect Charm.
Method Description
ShowPlayToUI Asks the PlayToManager to open the Connect Charm for the user.
GetForCurrentView Returns a valid instance

PlayToSourceRequest Object
Property Description
Deadline Time in which the application must supply a source
Events Description
None
Method Description
DisplayErrorString
GetDeferral Called when the application needs to perform asynchronous operations

to retrieve the current PlayTo source.
SetSource Called by the application to provide a PlayTo source to the manager.

PlayToSourceDeferral Object
Property Description
None
Events Description
None
Method Description
Complete Indicates the application has finished preparing a source object. This

unblocks the PlayToManager, allowing the Connect Charm to display
devices that are compatible with the application’s content.

4.17.3 SAMPLE JAVASCRIPT CODE

This demonstrates the PlayTo fucnctionality:

function initialize() {
 var pm = Windows.UI.Immersive.PlayTo.PlayToManager.getForCurrentView();
 pm.addEventListener("sourcerequested", sourceRequestedHandler, false);
}

Elements of Mosh: the developer story Page 182 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

function sourceRequestedHandler(e) {
 var sr = e.sourceRequest;

 var videoElement = document.getElementById('videoplayer')
 var controller = videoElement.msPlayToSource;

 // select the video element to use for PlayTo
 sr.setSource(controller);
}

document.addEventListener("DOMContentLoaded", initialize, false);

4.17.4 REFERENCES

1. PlayTo Functional Spec

4.18 CONNECT – SEND

Send enables users to share content from their current application with another device
application. Developers of any Windows application can utilize the Windows Send functionality to
enable their devices to send content. Apps that provide send-able content are called source
applications. The source application is the active application in the MoBody. An example source
application is a magazine reader.

Developers of send applications can utilize the send functionality so that users can send to their
application from any source application. Apps that receive send-able content and make it visible to
devices are called target applications. The target application is displayed in a flyout window. An
example target application is Windows Phone Application.

Elements of Mosh: the developer story Page 183 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Figure 1: A source app participating in the sharing contract

When the user chooses the Connect Charm from the Windows Edgy bar, the Connect flyout opens and
displays Send group in response:

1. Source applications provide the send-able item, potentially in multiple formats. The send-able
item is also used to determine which target applications to display in the list. Items are excluded
if they cannot support at least one of the formats for the send-able item.

2. Applications are displayed based on whether their package manifest indicates that they support
send.

3. After a user chooses an application from the list, the target app flyout opens. Windows
launches the correct target application and the target application displays UI for send. The
target application reads the send-able item from the source application.

Elements of Mosh: the developer story Page 184 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Figure 2: A target app participating in the sharing contract

4.18.1 OVERVIEW OF THE SEND SOURCE APP CONTRACT

The Send source app contract is very similar to the Share source app contract. However, because Share
is designed to work around people, it has additional user interface affordances that Send does not have.
For example, the DataTransferManager object is common between Share and Send. However, the
default behavior for Send is different (there is none) and the QuickLink mechanism is not used in Send.

When a source application implements the Send source app contract, it has to:

1. Create DataTransferManager object & handle DataRequested notification
2. If you’re retrieving data synchronously, set the Data or invoke the FailWithDisplayText method

on the DataRequestedEventArgs object before the timeout
3. If you’re retrieving data asynchronously, then retrieve a DataRequestDeferral object and call

Complete after the data is set or after there’s an error getting the data

The Data should have metadata properties:

Property Description

Title (required) A string for title of send-able content

Elements of Mosh: the developer story Page 185 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Description
(optional)

A string for brief description of content

4.18.1.1 THE SEND SYSTEM FLOW – SOURCE APP

1. The user opens the source application. The source application registers to support send by
creating a DataTransferManager object.

2. When the user invokes Connect from the Windows Edgy bar, the system asks source application
for the send-able item if the application has registered for send.

3. The system uses the formats of the send-able item to filter the target applications.
a. Note: If the source app is going to use delayed rendering of FileItems, the system uses

the file extensions provided in the FileTypes property to filter target applications
4. The user chooses a target application. The system adds the applications to the OS Task

completion list so they cannot be killed while participating in the send flow. The
TargetApplicationChosen notification is sent so the source application can record the app for
business intelligence purposes.

5. <See steps the next section for information about what the flow after the user chooses a target
application.>

4.18.1.2 WINRT API DETAILS

The source contract for the Send flows and Sharing utilize the same WinRT objects. For charms
invocation, the source application doesn’t know whether it was invoked for Send or Sharing. For
programmatic invocation, the source application has to choose which UI to display.

Windows.UI.Immersive.DataTransfer.DataTransferManager Static Object – used for programmatic
invocation only [optional]
Methods Description
ShowShareUI Programmatic invocation of the Share flow. Most source applications

should not need to use this because they can rely on the charms
invocation.

ShowSendUI Programmatic invocation of the Send flow (in the Connect charm). Most
source applications should not need to use this because they can rely on
the charms invocation.

GetForCurrentView Returns DataTransferManager object associated with the current window.

Windows.UI.Immersive.DataTransfer.DataTransferManager Object
Events Description
DataRequested This notification occurs when the user presses Connect charm or Share

Elements of Mosh: the developer story Page 186 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

(the source application intentionally does not know which charm the user
pressed). The app needs to respond within the timeout by calling a
method or setting the property on the DataRequest object retrieved
through the DataRequestedEventArgs object.

TargetApplicationChosen This notification occurs when the user chooses a target application in the
Connect charm or Share. The app can use this to record information for
business intelligence purposes about which applications are used to
complete actions.

Windows.UI.Immersive.DataTransfer .DataRequestedEventArgs Object
Property Description
Request Allows developer to get the DataRequest object to either set the data or

fail with display text.

Windows.UI.Immersive.DataTransfer.DataRequest Object
Methods Description
FailWithDisplayText Needs to be called before timeout in response to the event notification,

DataRequested, to opt-out of Send or Sharing given the current state of
the source application and provide an error string instead.

GetDeferral Returns DataRequestDeferral object which is necessary in order to set data
for share that is retrieved via an asynchronous operation.

Property Description
Data Needs to be set before timeout in response to the event notification,

DataRequested, to provide a Data Package for Send or Share.

Windows.UI.Immersive.DataTransfer.DataRequestDeferral Object
Methods Description
Complete Is used in scenarios when data for send or share is retrieved via an

asynchronous operation. After the data is set or an error occurs, call
Complete.

Windows.UI.Immersive.DataTransfer.TargetApplicationChosenEventArgs Object – used for gathering
business intelligence about the target application only [optional]
Property Description
ApplicationName After the event notification, TargetApplicationChosen, this property is set

with the target application’s name.

Elements of Mosh: the developer story Page 187 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.18.2 OVERVIEW OF THE SEND TARGET APP CONTRACT

To be a target application for Send, an application must:

1. Register support for the SendTarget extension in package manifest and include at least one
supported file extension or data package format in application manifest (hint: file extensions
must come first!).

2. Handle Send Activation & use the Data provided on the SendTargetActivationContext object.
SendTargetActivatedEventArgs, which is passed through onActivate(), contains a property
called SendTargetActivationContext which is of type SendTargetActivationContext.

3. For an extended (Long Running) send only, call ReportExtendedSendStatus once the user has
committed the send task and the app is ready to be added to the send progress list in Connect
Charm.

a. Optionally report additional status to optimize resource usage of the system.
b. Optionally call SetExtendedSendDisplayText to be shown on the app tile in the progress

list.
c. Optionally report a catastrophic failure with ReportExtendedSendError.

4. Call ReportCompleted when the send is complete if the send was successful

4.18.2.1 THE SEND SYSTEM FLOW – TARGET APP

1. The user installs the target application. The target application’s package manifest declares that it
supports send.

2. The system copies this information and stores it so it can be later queried to display applications
in the send flyout.

3. <See steps above in the system flow as it pertains to the source application>
4. When the user chooses the target application, the system will activate that application via its

application interface and using the details it provided during registration to launch it directly to
its send view

a. While the application is being activated, the system will display a splash screen for the
application

5. The system will add the target application to the OS Task completion list so it cannot be killed
while part of the send flow or when completing a send in the background

6. If the target application handles extended send—usually the case if they upload content types
that can take more than a few seconds—they report status as they go:

a. They report when the user presses the Submit/Send/Record button and thus if the user
taps outside of the flyout, the system will hide the window vs. destroy it

7. When the target application is finished, it calls ReportCompleted. At this point, the system
removes it from the OS Task completion list.

Elements of Mosh: the developer story Page 188 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Note: There are optimizations the target can do to preserve battery life and these are covered in more
detail in the Sharing Platform functional spec. They only apply to target applications that support
extended send scenarios.

The following example shows how an application registers for send in its package manifest.

<Extension Category="windows.sendTarget" StartPage="device.html">
 <SendTarget>
 <SupportedFileTypes SupportsAnyFileType="false">
 <FileType>.png</FileType>
 <FileType>.customFileType</FileType>
 </SupportedFileTypes>
 <DataPackageFormat>Uri</DataPackageFormat>
 <DataPackageFormat>Text</DataPackageFormat>
 </SendTarget>
</Extension>

4.18.2.2 WINRT API DETAILS
Windows.UI.Immersive.SendTarget.SendTargetActivationContext Object
Property Description
Data A Modern Data Package that contains the data passed by the source

application.
Methods Description
ReportCompleted The target application should call this after the send has completed

successfully or unsuccessfully. The complete call closes the UI and
effectively shuts down the application. A quick send is a task where
it’s reasonable for the user to view the UI until the send completes,
such as send text/URI to device. For an extended send, this will be
called after the final data transfer/send is complete, which is likely
quite a while after the user presses ‘send’. An extended send is a
task where it’s unreasonable to make the user wait and view the
send UI until the send completes, because it will take more than 5
seconds, such as sending movies to a DVR.

ReportExtendedSendError The target application should call this after the send has completed
unsuccessfully and it has the option of returning a string that will be
displayed in the UI. Generally, the application should report an
error only if something unrecoverable has happened

ReportExtendedSendStatus If the target application supports extended send scenarios, then it
should use this method to report status to the send platform. The
application needs to report values defined in the
ExtendedSendStatus enum:

• Started – This is required for extended send to behave

Elements of Mosh: the developer story Page 189 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

correctly in the UI model. The application should report this
after the user has committed the send task. This puts the
app in the send progress list and enables a user to close the
window without shutting down the application and thus
stopping the send task.

• DataExtracted – This is optional for extended send to
optimize resource usage of the system. Applications should
report this if they have finished extracting data from the
Data Package.

• SubmittedToBackgroundManager – This is optional for
extended send to optimize resource usage of the system.
Applications should report this if they have handed off the
remainder of the send task to the Background Manager. An
example is the WPD (Windows Portable Device) APIs.

SetExtendedSendDisplayText The target application can call this while it is running to modify the
string that is displayed in the background progress window. This is
how an application can call the user’s attention to take action in
their application.

4.18.3 SAMPLE JAVASCRIPT CODE

The following code runs on the source app.

// Simple send scenario
var dtm =
Windows.UI.Immersive.DataTransfer.DataTransferManager.getForCurrentView();
dtm.addEventListener("datarequested", function (ev) {
 // Populate the data package properties
 ev.request.data.properties.title = "Title"; // required
 ev.request.data.properties.description = "Description"; // optional

 // Populate data package format(s), this is send a text item
 ev.request.data.setText("http://www.buildwindows.com");
});

The following code runs on the target app.

 // Initialize the activation handler
 Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
activatedHandler, false);

 // global variable to store the SendTargetActivationContext object
 var sendCtx = null;

Elements of Mosh: the developer story Page 190 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 // Handler executed on activation of the target
 function activatedHandler(eventArgs)
 {
 // in this sample we only do something if it was activated with
the Send contract
 if (eventArgs.contractId == "Windows.SendTarget")
 {
 // we receive the Send activation context as part of the
eventArgs
 sendCtx = eventArgs.sendTargetActivationContext;
 }
 }

 // Call the reportCompleted API on the global context we got from
the activation context
 sendCtx.reportCompleted(null);

4.18.4 REFERENCES

1. Connect Charm - M3 Functional Spec
2. SendTo Functional Spec
3. Building an application using send – UX guidance
4. Share team’s documentation

a. Share M3 User Experience Functional Spec, Share M3 Platform Functional Spec
b. Share API Review Doc
c. Building an application using share – UX guidance
d. Code Samples

4.19 CONTROLS

Windows 8 features a new set of user interface controls that help you create apps with the look and feel
of Windows in a way that is easy, fast, and hassle-free for both WWA and XAML development. You
should use these controls when possible to achieve common Windows 8 UX Patterns rather than trying
to replicate the pattern on your own through custom code. Here is a quick summary table of them:

Control
Name

Category Description WWA API XAML API

Flip View Collection Let’s you flip
through a
collection of
items, one at a
time.

Win.UI.FlipView <FlipView>

Grid View Collection Let’s you view
items in a 2D
grid that scrolls

Win.UI.ListView (with layout:
{ type: Win.UI.GridLayout})

<GridView>

Elements of Mosh: the developer story Page 191 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

side-to-side.
Grouped
Grid View

Collection Let’s you view
items in a 2D
grid that scrolls
side-to-side,
where the items
appear in
groups.

Win.UI.ListView (with layout:
{ type: Win.UI.GridLayout})

<GridView IsGrouping
= ' true'>

List View Collection Let’s you view
items in a
vertical list that
scrolls up/down.

Win.UI.ListView (with layout:
{ type: Win.UI.ListLayout})

<ListView>

Semantic
Zoom

Collection Let’s you
semantically
zoom between
two collection
views.

Win.UI.SemanticZoom <JumpViewer>

Web View Content Hosts web
content.

<iframe> <WebView>,
<WebViewBrush>

Checkbox General
Controls

Represents a
control that a
user can select
or clear.

<input type="check"> <CheckBox>

Date Picker General
Controls

Set a date Win.UI.DatePicker n/a

Hyperlink General
Controls

A button that
appears as
marked up text,
typically used
inline within text
blocks.

<a> <HyperlinkButton>
<Hyperlink>

List Box,
Drop-down

General
Controls

Display a string
with an
dropdown icon
next to it.
Clicking it
displays a popup
list of items for a
user to select
among. The
string shows the
currently
selected item.

<select> <ComboBox>

List Box,
Inline

General
Controls

Displays an
inline list of
items for a user

<select> <ListBox>

Elements of Mosh: the developer story Page 192 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

to select among.
Progress Bar General

Controls
Determinate and
indeterminate
progress bar
control.

<progress> (width != height) <ProgressBar>

Progress
Ring

General
Controls

Determinate and
indeterminate
progress ring
control.

<progress> (width != height) <ProgressRing>

Push Button General
Controls

A standard
button that fires
a click in
response to a
user tapping on
it.

<button> <Button>

Radio
Button

General
Controls

Allows a user to
select a single
option from a
list of options.
When radio
buttons are
grouped
together they
are mutually
exclusive.

<input type="radio"> <RadioButton>

Rating General
Controls

View or edit star
ratings

Win.UI.Rating n/a

Slider General
Controls

Slider <input type="range"> <Slider>

Time Picker General
Controls

Set a time Win.UI.TimePicker n/a

Toggle
Switch

General
Controls

Switch settings
on and off

Win.UI.ToggleSwitch <ToggleSwitch>

Audio
Playback

Media Plays audio (with
playback
controls).
Supports DRM
and non-DRM.

<audio controller=true> <MediaPlayer>

Video
Playback

Media Plays video (with
playback
controls).
Supports DRM
and non-DRM.

<video controller=true> <MediaPlayer>

App Bar Overlay Application
toolbar for
displaying

Win.UI.AppBar <ApplicationBar>

Elements of Mosh: the developer story Page 193 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

commands.
Context
Menu

Overlay Custom context
menu presenting
commands
specified by app
developer.

Windows.UI.PopManager n/a

Flyout Overlay Flyout Win.UI.Flyout n/a
Tooltip, Rich Overlay Tooltip that can

support rich
content (e.g.
images and
formatted text)
to show more
information
about
something.

Win.UI.Tooltip <Tooltip>

Tooltip,
Simple

Overlay Plain text tooltip
to show more
information
about
something.

<div title='foo'> <Tooltip>

Multi-line
Text Box

Text Mutli-line plain
text box.

<textarea> <RichEditBox>,
<TextBox
AcceptsReturn =
'true'/>

Password
box

Text Password box <input type="password"> <PasswordBox>

Rich Text
Box

Text Multie-line
rich/styled text
box.

<div contentEditable=true> <RichEditBox>

Single-line
Text Box

Text Single-line plain
text box

<input type="text"> <TextBox>,
<RichEditBox
AcceptsReturn=
'false'>

Panning
ScrollView

View Displays a view
of content a user
can pan around
in one or two
dimensions, and
various features
like snap points,
etc. that
enhance that
experience.

<div style=overflow:scroll> <ScrollView>

Scroll Bar View Not directly
exposed to

<div style=overflow:scroll> <SrollBar>

Elements of Mosh: the developer story Page 194 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

developers. It
manifests itself
in the context of
scroll views. You
can't just include
it as a
standalone
control in an
app.

Zooming
ScrollView

View Displays a view
of content a user
can zoom in/out
of, and various
features like
snap points, etc.
that enhance
that experience.

<div style=overflow:scroll; -
ms-content-zommable:true>

<ScrollView>

For a full list of controls with additional details, see Windows UI Toolkit for Tailored Apps. For guidelines
on how to best use the different controls, see Designing and Building an App with the Windows 8 Look
and Feel.

The next sections describe the controls programming model and the specific controls in more detail.

4.19.1 USING CONTROLS

4.19.1.1 USING CONTROLS (WWA DEVELOPMENT)

To get started using controls you need to include the appropriate CSS and JS files from the Windows
Library for JavaScript (a.k.a. WinJS) into your project. The default project templates in Visual Studio
already include these, but for your reference these are at a minimum the files you need to include:

<link rel="stylesheet" href="/winjs/css/ui-dark.css" />
<script src="/winjs/js/base.js"></script>
<script src="/winjs/js/ui.js"></script>
<script src="/winjs/js/binding.js"></script>
<script src="/winjs/js/controls.js"></script>
<script src="/winjs/js/animations.js"></script>
<script src="/winjs/js/uicollections.js"></script>

Note that it’s important to include the ui-dark.css stylesheet not only for controls, but also because it
provides an overall base default style for your application including page background, typography, etc.

The individual controls you may want to use fall into two categories:

Elements of Mosh: the developer story Page 195 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1. HTML Controls. These are built directly into HTML and typically map to W3C standards such as
<button>, <input type=”range”>, <div overflow:scroll>, and <video>. While the tags, methods,
attributes, etc. to program against them are standard, their implementations and their look and
feel have been updated to match that of Windows 8.

Here’s an example of how you would instantiate a standard progress control declaratively in
HTML markup:

<progress id='myProgress' value='75' max='100'>

2. JavaScript Controls. These controls were created specifically for WWAs and go beyond web
standards. Windows 8 defines a common JS control model for instantiating and using these
controls. These controls are available for WWAs through the Windows Library for JavaScript
under the Win.UI namespace (note: PDC-3 and beyond it will be the WinJS.UI namespace).

To instantiate controls declaratively you simply include inline markup right in your HTML such as
the following example for the ratings control, specifying the name of the control type and any
optional parameters:

<div class="myRating" data-ms-control="Win.UI.Rating"
 data-ms-options="{maxRating: 5, averageRating: 3.5}">
</div>

If using the above declarative method you also need to include a call (typically in response to the
DOMContentLoaded event) to the following function to actually do the instantiation:

WinJS.UI.processAll();

If you prefer to do the instantiation manually you can do it this way and you don’t even need to
use the declarative markup:

var progress = new Win.UI.Rating(
 document.getElementById('myRating'), {
 maxRating: 5,
 averageRating: 3.5}
);

In addition to the Standard and Javascript based controls, there are some system features that people
sometimes think of as controls, most notably the context menu, which are exposed as WinRT API
projections. See WinRT documentation for information on instantiating those.

4.19.1.2 USING CONTROLS (XAML DEVELOPMENT)

Elements of Mosh: the developer story Page 196 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

For XAML-based development, all controls are standard XAML elements. See XAML documentation for
more details.

4.19.1.3 REFERENCES

1. Windows UI Toolkit for Tailored Apps
2. A Developer's Guide To Consuming PAC Web Technologies
3. WinRT UI development cookbook
4. JS Control Model Spec
5. Corsica Object Design Walkthrough
6. W3C HTML 5 Spec

4.19.2 LISTVIEW

A very common and important scenario in MoSh applications is presenting a collection of items to users.
The ListView is a WinUI JavaScript control that enables easy creation and management of a data
collection in a WWA and provides an interaction model consistent with that of Windows.

It is possible to virtualize, data bind, and template items in the ListView by passing a data source and an
item renderer to the control. The ListView control also provides a set of options for altering its look and
feel, and it supports the styling of items via CSS classes.

To use the ListView in your Windows Web Application, include uicollections.js and uicollections.css as
part of your application.

4.19.2.1 API DETAILS
ListView Object
Properties Description
layout Specifies the layout of the ListView. While custom layouts are

possible, the most common values are the pre-defined layout
objects {type: Win.UI.GridLayout} and {type:
Win.UI.ListLayout}

selectionMode Specifies the selection mode of the ListView. Possible values:
none, single, multi, extended.

tap Specifies what should happen when the user taps on an item.
Possible values: selectandinvoke, invokeonly, none

crossslide Specifies what should happen when a user crossslides on an item.
Possible value: select, none

loadingBehavior Controls the loading behavior of the ListView. Possible values:
• randomaccess

The scrolling region of ListView is calculated based on
the entire set of data. Items will be swapped in and

Elements of Mosh: the developer story Page 197 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

out of the DOM such that at any given time the items
that exist in the DOM are the current viewport items
and one page before and after the viewport.

• incremental
The ListView loads items in chunks. When a user
reaches a threshold scrolling amount in the scroll
region of the ListView, the next chunk of items is
loaded into the DOM.

automaticallyLoadPages When the loadingBehavior is incremental, this determines if new

pages should be loaded automatically. Possible values are true
and false.

loadNextPages Manually initiates an incremental load. The number of pages to be
loaded is determined by pagesToLoad (see below).

pagesToLoad Determines how many pages of items should be loaded when an
incremental load happens.

pageLoadThreshold When automaticallyLoadPages is true, an incremental load will be
automatically initiated when the user is pageLoadThreshold away
from the end of the list.

reorder Specifies the reorder mode of the ListView. Possible values: true,
false.

editable Can be set to true or false. If false, the ListView will disable CUT
and DELETE operations by the user.

scrollPosition The position of the scrollbar in the ListView.
itemRenderer Specifies the function that the Items Manager uses to create item

templates. This function can be a Corsica data template, or a
custom rendering function of the signature: "function (item)."
Setting this property is required if you want to style the ListView
items.

dataSource Specifies the data source used by the ListView to generate items.
Data sources can be created using the following functions:
createObjectDataSource, IteratorDataSource,
createVectorDataSource.

groupDataSource Specifies the data source for Groups. The second parameter of the
GroupDataSource object is a function that describes the groupBy
function. For example:

listView.groupDataSource = new
Win.UI.GroupDataSource(listView.dataSource, function
(item) {
 var firstLetter = item.title.toUpperCase().charAt(0);
 return {
 key: firstLetter,
 data: {
 title: firstLetter
 }
 };

Elements of Mosh: the developer story Page 198 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

});

Setting this property is required if you want to enable groups.

groupHeaderPosition Specifies the position of group headers. This is a property of the
layout property (which in turn is a property of the ListView—see
above). Possible values are “top” and “left”.

groupRenderer Specifies the function that determines the look of the group
header. The function has the following signature: "function
(item)," where item is group for which the function should
generate an element. For example:

listView.groupRenderer = function (item) {
 var div = document.createElement("div");
 div.innerText = item.data.title;
 return div;
};

Setting this property is required when using groups.

Events Description
itemInvoked Event raised when the user clicks on item in browse mode.
selectionChanging Event raised before selection changes. To cancel the selection

change, set the Allowed flag to False. To cancel selection,
applications should call preventDefault instead of setting the
Allowed flag.

selectionChanged Event fires when selection has changed.
readyStateChanged Event raised when the view state changes during initialization and

after scrolling operations. Two values are reported:

“loading” which is equivalent to ListViewState.initalized.
 “complete” which is equivalent to ListViewState.ready.

dragitemsstart Event raised by the drag-and-drop source when a new drag-and-
drop operation is initiated.

dragitemsend Event raised by the drag-and-drop source when the user drags to a
desired drop target.

dragitems Event raised by the drag-and-drop source when any items are
dragged.

dragitemsenter Event raised by the drag-and-drop target when any items are
dragged into a desired drop target.

dropitems Event raised by the drag-and-drop target when any items are
dropped into a desired drop target.

Methods Description
addEventListener Implements the DOM level 2 EventTarget interface method.
ensureVisible Makes the item at the specified index of the data set visible within

the viewport.
firstVisible Retrieves the index of the first visible ListView item.
getElementAtIndex Retrieves the index of the ListView item.

Elements of Mosh: the developer story Page 199 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

getIndexFromElement Retrieves the HTML node at the specified index.
lastVisible Retrieves the index of the last visible item in the viewport.
removeEventListener Implements the DOM level 2 EventTarget interface method.
scrollTo Scrolls the ListView viewport to the specified index.
selection Gets or sets the selected items for the ListView. Specifying no

parameters returns the currently selected items. Specifying an
array of integers sets the ListView objects selected items.

Datasource Object (listview.datasource)
Methods Description
createListBinding Creates a ListBinding that can be used to retrieve item information from the

dataSource. A binding must be created in order to retrieve actual item data
from the dataSource. See the ListBinding Object methods below.

refresh Forces a refresh.
beginEdits Notifies the Items Manager that a sequence of edits is about to begin. It should

be called immediately before edits are made to the list.
getCount Retrieves the number of items in the data source’s data set.
remove Removes the item at a specified key.
endEdits Notifies the Items Manager that a sequence of edits is about to end. It should

be called immediately after edits are made to the list.
insertBefore Signature is (key, data, nextKey). Inserts the specified data into the dataSource,

with the specified key, before the item at nextKey.
insertAtStart Signature is (key, data). Inserts the specified data into the dataSource, with the

specified key, before the item at the start of the list.
insertAfter Signature is (key, data, previousKey). Similar to insertBefore, except inserts

after previousKey.
insertAtEnd Signature is (key, data). Similar to insertAtStart, except inserts at the end of the

list.
change Signature is (key, newData). Provides new data for the item with key.
moveBefore Signature is (key, nextKey). Moves the item with key to before nextKey.
moveToStart Signature is (key). Moves the item with key to the start of the list.
moveAfter Signature is (key, previousKey). Moves the item with key to after previousKey.
moveToEnd Signature is (key). Moves the item with key to the end of the list.

ListBinding Object (retrieved via listview.datasource.createListBinding)
Methods Description
first Retrieves the first item in the list
last Retrieves the last item in the list
fromKey Signature is (key, prefetchBefore, prefetchAfter). Retrieves the item with the

specified key. prefetchBefore and prefetchAfter are optional params.
fromIndex Signature is (index, prefetchBefore, prefetchAfter). Retrieves the item at the

Elements of Mosh: the developer story Page 200 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

specified index. prefetchBefore and prefetchAfter are optional params.
 (note: these are the main functions most people will use, but there are others;

see References section, #3)

4.19.2.2 INITIALIZATING THE LISTVIEW

To initialize a ListView:

1. In your HTML, create a div element that will be the parent of the ListView control. Make sure
that you specify a height and width for this div.

2. In your code behind, create the dataSource that contains the data to display.
3. The example below uses Corsica templating to define how each item in the ListView will look.

You can also pass your own templating function to the itemRenderer if desired.

The following example will create a ListView with a Corsica data template for each item in the view.

// Required JavaScript Files
<link rel="stylesheet" href="/winjs/css/ui-dark.css" />
<script src="/winjs/js/base.js"></script>
<script src="/winjs/js/ui.js"></script>
<script src="/winjs/js/binding.js"></script>
<script src="/winjs/js/controls.js"></script>
<script src="/winjs/js/animations.js"></script>
<script src="/winjs/js/uicollections.js"></script>

// HTML Markup
<div id="itemTemplate" data-win-control="Win.Binding.Template">
 <div class="imageWithTextTemplateClass">
 <div class="title" data-win-bind="innerText: title"></div>
 <div data-win-bind="innerText: text"></div>
 </div>
</div>

<div id="listView" data-win-control="Win.UI.ListView"
 data-win-options="{
 dataSource: myData,
 itemRenderer: itemTemplate,
 selectionMode: 'multi',
 layout: {type: Win.UI.GridLayout}
 }" >
</div>

4.19.2.3 SAMPLE JAVASCRIPT CODE

// An array of JSON data, which can be passed to the dataSource property
// to provide data to the ListView

Elements of Mosh: the developer story Page 201 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

var myData = [
 {title: "Vanilla", text: "Vanilla Ice Cream"},
 {title: "Strawberry", text: "Strawberry Sorbet"},
 {title: "Banana", text: "Banana Frozen Yogurt"}
];

// Process the Control
document.addEventListener("DOMContentLoaded", function () {
 Win.UI.processAll();
 }, false);

More examples and code can be seen in the QuickStart for ListView guide. (currently in draft state).

4.19.2.4 REFERENCES

1. *Best Resource*: Send questions or comments to the listviewdisc alias!
2. ListView Sample Tests. A good place to peek at ListView test code; focus on SimpleTA.html.
3. Useful API Doc on DataSource APIs

4.19.3 FLIP VIEW

The FlipView is a collection control that displays a single item from a list at a time and provides simple
forward and backward navigation. Just as for ListView, it is possible to virtualize, data bind and
template items in the FlipView by passing a data source and an item renderer to the control.
The FlipView also supports styling of items via CSS classes.

4.19.3.1 API DETAILS
FlipView Object
Properties Description
orientation Specifies the orientation of the FlipView control: horizontal or vertical.
dataSource Specifies the items to be displayed in the FlipView.
itemRenderer Specifies the data templating function for the item manager.
placeholderRenderer Specifies the templating function that generates placeholder items while

the actual item loads.
currentPage Gets and sets the current page that is being displayed in the FlipView.
Events Description
PageVisibilityChanged Raised when a page becomes visible or invisible. It is fired on the content

element itself and bubbles up. The source property is the HTML element
on which the FlipView is attached, and visible is a boolean that indicates
whether the page is visible.

DatasourceCountChanged Raised when items are changed, inserted, or added to the data source.
Methods Description
next Flips the FlipView to the next item.
previous Flips the FlipView to the previous item.

Elements of Mosh: the developer story Page 202 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

count Retrieves the number of items in the data source. This is done via a
promise.

SetCustomAnimations

Takes an object that can have three properties: next, previous, jump.
These properties are functions that have the signature:
function(ingoingItem, incomingItem). This function is responsible for
animating the two items in/out of the view. This function must return a
WinJS.Promise, that should be completed when the function is done
animating.

4.19.3.2 INITIALIZING A FLIPVIEW

To initialize a FlipView:

1. In your HTML, create a div element that will be the parent of the FlipView control. Make sure
that you specify a height and width for this div.

2. In your code behind, create the dataSource that contains the data to display. Create an
itemRenderer if you do not want to use default item template.

The following example initializes a FlipView.

var options = {dataSource: someDataSource, itemRenderer: someRenderer};
var listview =
Win.UI.Controls.FlipView(document.getElementById("someDiv"), options);

4.19.3.3 SAMPLE JAVASCRIPT CODE

// Note: Corsica Libraries must be included for this to function properly
<script type="text/javascript" language="javascript">
 function onLoad() {
 var FlipViewDiv = document.getElementById("FlipView");
 var FlipView = Win.UI.FlipView(FlipViewDiv, { dataSource:
 createSimpleDataSource(), itemRenderer: FlipViewItemRenderer });
 }

 function createSimpleDataSource() {
 var testData = [
{ name: "http://www.cbhbblog.com/wp-content/uploads/2010/09/MSU-Flag.jpg" },
{ name: "http://images.dawgsports.com/images/admin/MSU_mascot_helmet.jpg" },
{ name: "http://www.math.msu.edu/images/msu1.jpg" }];

 return new Win.UI.ArrayDataSource(testData);
 }

 function FlipViewItemRenderer(e) {
 var result = document.createElement("div");
 var image = document.createElement("img");
 image.src = e.data.name;
 result.appendChild(image);
 return result;
 }
 document.addEventListener("DOMContentLoaded", onLoad, false);

Elements of Mosh: the developer story Page 203 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

</script>

<div id="FlipView" class="FlipView"></div>

4.19.3.4 REFERENCES

1. FlipView API Documentation Wiki
2. FlipView API Spec
3. Items Manager API Documentation Wiki
4. Useful API Doc on DataSource APIs

4.19.4 APPLICATION COMMAND UI

Application Command UI enables applications to have fullscreen immersive experiences that prioritize
content while allowing the applications to still have a reliable method for invoking hidden commands.
Application Command UI can be invoked and dismissed using touch, mouse, and keyboard.

4.19.4.1 MECHANICS OF THE TOUCH GESTURE

If the user performs a single finger swipe that starts on the top or bottom edge of the screen and is
perpendicular to the edge, then Application Command UI events are fired. Swipes that are parallel to
the edge of the screen, taps, or multi-finger input are normal input that goes through to the app.

4.19.4.2 EVENTS FOR TOUCH

When an Application Command UI gesture occurs, the application receives a series of
events. Applications should listen for these events and respond to them by showing secondary
navigation, commands, and information. If the secondary commands are already shown, then a series
of Application Command UI events should be interpreted as a dismissal of those app commands.

As soon as the user starts swiping for the gesture, an invoking event occurs, which is when applications
should start animating in/out their command UI. Once the user completes a swipe, then an invoked
event occurs, which is when the UI should conclude its entrance/exit. If the user swipes toward the
middle of the screen, but then in the same gesture “cancels” out the gesture by swiping back to the
edge of the screen, then a cancel event occurs; this should cause the Command UI to dismiss if it was in
the process of animating in. Gestures starting over/under the Fill app go to the Fill app. Gestures
starting over/under the Snapped app go to the Snapped app. The app is given activation before the first
Application Command UI Invocation event is fired. No location information of the touch gesture is
given. The same event is fired for gesture from the top and bottom edges. These events include a
“source” attribute indicating whether they were triggered by an edge gesture or a keyboard shortcut.

Elements of Mosh: the developer story Page 204 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Whenever an Application Command UI gesture occurs, then the Application Command UI events are
always fired. It is up to the app to handle the events. There is no way for apps to opt out of app gesture
detection.

4.19.4.3 EVENTS FOR MOUSE

Applications should show/hide their command UI when a right click event over the app is detected.

4.19.4.4 EVENTS FOR KEYBOARD

When the user presses Win+Z, the Application Command UI invoked event is sent to the app that has
focus with the source property of keyboard shortcut.

4.19.4.5 SAMPLE JAVASCRIPT CODE

// Register for Application Command UI events
var appCmdUI =
Windows.UI.Immersive.ApplicationCommandUI.getForCurrentView();

appCmdUI.addEventListener("invoking", onInvoking);
appCmdUI.addEventListener("invoked", onInvoked);
appCmdUI.addEventListener("canceled", onCanceled);

// Register for Context Menu events
document.oncontextmenu = onContextMenu;

// JavaScript definition for right mouse button
var MOUSE_RIGHT_BUTTON = 2;

// Show Application Command UI on mouse right click or context menu key
function onContextMenu(e) {
 // determine whether it was mouse right click
 if (e.button == MOUSE_RIGHT_BUTTON) {
 alert("Right Click Invocation");
 }
}

// Show Application Command UI in an entry state
function onInvoking() {
 alert("Invoking with touch");
}

// Show Application Command UI in an invoked state
function onInvoked(e) {
 // determine whether it was touch or hotkey invocation
 if (e.source ==
 Windows.UI.Immersive.ApplicationCommandSource.edgeGesture)
 {
 alert("Invoked with touch");
 }

Elements of Mosh: the developer story Page 205 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 else if (e.source ==
 Windows.UI.Immersive.ApplicationCommandSource.keyboardShortcut)
 {
 alert("Invoked with keyboard shortcut");
 }
}

// Dismiss the attempt to invoke Application Command UI. If the
// invoking handler changed the UI state (e.g. showing an overstretched
command bar), dismiss it here.
function onCanceled() {
 alert("Canceled with touch");
}

4.19.4.6 REFERENCES

1. Edge UI Invocation Functional Spec

4.19.5 APPLICATION BAR

The application bar is an in-framework control that provides a common way for applications to present
navigation, commands, and tools in a manner consistent with the content over chrome philosophy
(reduce distractions to provide an immersive experience). The application bar uses Windows styling, but
is customizable.

The application bar is an application’s primary UI surface for commands. If users must have access to
commands that are not provided by direct manipulation and are not critical on-canvas commands, then
add those commands to an application bar.

There are two styles of application bar, the transient bar and the persistent bar. Transient bars start out
hidden. The user can show or hide the bar by swiping on the top or bottom edge of the screen.
Transient application bars can also be set to dismiss when the user interacts with the application or to
dismiss after a period of time. Persistent bars remain on screen though the user can control, via an edge
swipe, whether the button labels are shown or hidden.

If users must use the commands on the application bar to complete their primary task, then the bar
should be persistent. If the commands are secondary to the user’s task, then they should be on a
transient bar.

Elements of Mosh: the developer story Page 206 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Application bar with 4 commands

4.19.5.1 SAMPLE JAVASCRIPT CODE

The following example shows how to initialize an application bar:

// Note: Corsica Libraries must be included for this to function properly

<script type="text/javascript">
 // Appbar initialization
 document.addEventListener("DOMContentLoaded", function () {
 Win.UI.processAll();
 }, false);
</script>

This example uses HTML to create a lightweight, transient application bar:

<!-- Bottom Command Bar -->
 <div data-win-control="Win.UI.AppBar" data-win-
options="{position:'bottom',transient:true,autoHide:0,lightDismiss:true}">
 <div class="win-appbar-commands">
 <!-- Add Content Here -->
 <button onclick="alert('Command 1')">
 <span class="win-
appbar-expands">Command 1
 </button>
 <button onclick="alert('Command 2')">
 <span class="win-
appbar-expands">Command 2
 </button>
 </div>
 </div>

This example shows how to programmatically close the application bar programmatically.

Elements of Mosh: the developer story Page 207 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

// This is how we would hide our bar programmatically (event will do it
// automatically)
document.getElementById("myTopBar").msControlObject.hide();

4.19.5.2 REFERENCES

1. App Bar M3 Functional Spec
2. App Bar M3 Dev Design
3. App Bar M3 DDI Spec

4.19.6 SPLASH SCREEN

The splash screen is a required visual component used by the system to provide instant feedback to
users when your application is launched. For all applications, the splash screen is shown briefly while
your application is initialized, affording a clear indication that a transition has occurred and that the
application will soon take control of the experience. Once your application returns from activation and is
ready for interaction, the splash screen will automatically dismiss.

All applications must declare a splash screen. To customize the splash screen, developers modify the
splash screen element in the application’s package manifest. This element consists of two attributes:

• Image (Required)
The image must be a 624x304 JPG or PNG and can be localized for different languages
and/or contrast modes. To accommodate scaling, two versions of each image asset must be
provided.

• Background Color (Optional)
The background of the splash screen is a solid color specified using hexadecimal color codes
or one of 16 standard color strings defined by HTML5. If omitted, the splash screen will
inherit the value of the background color attribute of the VisualElements node.

The following example demonstrates the declaration of the splash screen in the manifest:

<SplashScreen BackgroundColor="black" Image="splash.png" />

Using the above example, the splash screen would consist of a black background and the image
splash.png.

Elements of Mosh: the developer story Page 208 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.19.6.1 SPLASH SCREEN FLOW

1. The developer adds the splash screen registration markup to the application’s manifest. This
registration includes details about what content will be displayed in the splash screen.

2. The user installs the application.
3. Upon install, Windows stores the splash screen content details from the app’s manifest.
4. The user launches the application.
5. The splash screen is immediately triggered and shown for a minimum of one second (for the

duration of the launch animation).
6. At that point, if the application is ready the splash screen will be dismissed promptly. Otherwise,

the splash screen will remain on screen until the app returns from activation or a timeout occurs
(15 seconds).

7. The splash screen is dismissed by the system using a brief cross-fade animation.

4.19.6.2 SPLASH SCREEN API

In addition to specifying the static content to be displayed within the splash screen, you can also utilize
the splash screen API to further customize your application’s loading experience. Because many
applications will need to complete additional loading tasks upon startup, the splash screen API offers a
way to extend the splash screen experience into your application, creating one seamless loading flow. In
addition, the splash screen API also provides a way for applications to register to be notified when the
splash screen has been dismissed. Applications will use this notification to determine when it is
appropriate to begin content entrance animations or other operations once the application’s UI is
completely in view.

4.19.6.2.1 EXTENDING THE SPLASH SCREEN

Elements of Mosh: the developer story Page 209 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

To extend the splash screen experience into the application’s first view, applications can retrieve the
splash screen image coordinates from the SplashScreenInfo object, located off of the activation
eventargs. Using these coordinates, applications can position the image in the same location of their
first view. This way, the transition from the splash screen to your application will be abstracted from the
user. Because your application will be in complete control of the experience at that point, it is possible
to provide additional loading information or progress before you are ready to navigate to your
application’s landing page.

System splash screen Application’s first view with additional loading text

4.19.6.2.2 REGISTERING FOR DISMISSAL NOTIFICATIONS

To listen for the splash screen dismissal notification, applications can register for the
splashscreendismissed event, located off of the activation eventargs. This event fires when the splash
screen has been fully dismissed, indicating that it is safe to start any operations that require the
application’s UI to be in view. For example, it is recommended that applications handle this event to
start any content entrance animations that may be used.

4.19.6.3 SAMPLE JAVASCRIPT

Extending the splash screen:

Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
onActivation, false);

function onActivation(e){
 var splash = e.splashScreenInfo;

 // Retrieve the window coordinates of the splash screen image
 coordinates = splash.imageLocation;

 // Position the extended splash screen image in the same location
 var image = document.getElementById("extendedSplashImage");
 image.style.position = "absolute";
 image.style.left = "" + coordinates.x + "px";
 image.style.top = "" + coordinates.y + "px";
}

Loading…

Elements of Mosh: the developer story Page 210 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

In the above example, “extendedSplashImage” would refer to an element in the application’s first
view.

Registering for dismissal notifications:

Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
onActivation, false);

function onActivation(e){
 var splash = e.splashScreenInfo;

 // Register an event handler to be executed when the splash
 // screen has been dismissed
 splash.addEventListener("splashscreendismissed", onSplashDismissed,
false);
}

function onSplashDismissed() {
 // Start content entrance animations...
}

4.19.6.4 REFERENCES

1. Splash Screen M3 Functional Spec
2. Splash Screen M3 API Summary
3. Sample Splash Screen Image

4.19.7 MESSAGE DIALOG

A message dialog presents the user with an urgent message or a question that must be answered. It can
be dismissed programmatically, or when the user chooses a button. Message dialogs are UI modal – the
user cannot interact with the application that launched the message dialog until the dialog is dismissed.
Message dialogs are asynchronous – the code that calls the message dialog is not blocked and will
continue to execute. Callbacks are used to know when a button is pressed or the dialog is dismissed.
Dialogs appear vertically centered and fill the entire width of the screen.

Message dialogs are designed to be intrusive so that the user must acknowledge its content before
continuing on in their immersive experience. They should be used sparingly since they are very
disruptive for the user.

A message dialog can contain 3 pieces of information:

• Title (optional)
• Content string (required)
• Up to 3 buttons (optional) – if no button is specified a default Close button is provided

Elements of Mosh: the developer story Page 211 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The title is used to give context to the message that is being presented and they should only be used if
necessary. Most of the time, a message dialog is just the content string is appropriate. If used, the title
should be kept very short, and not contain any instruction or question.

The content string contains the main instruction or question of the dialog.

The buttons should be used to answer the specific question and should not be generic OK/Cancel
buttons. In the preceding example, the two buttons are labeled as Allow and Don’t Allow because they
provide concrete answers to the question the dialog asks.

4.19.7.1 SYSTEM FLOW

1. The user launches a modern application.
2. The user takes some action that requires a message dialog.
3. The application creates the MessageDialog object and sets the content string and, if necessary,

title.
4. The application adds any buttons, and specifies the appropriate callbacks that are necessary to

the dialog by calling MessageDialog.commands.append(UICommand);
5. The application shows the MessageDialog using MessageDialog.ShowAsync().operation.start() or

optionally shows it and specifies a callback for when the dialog is closed by using
MessageDialog.ShowAsync().then(callback).

6. The system shows the message dialog that contains the strings and buttons that the application
specified.

7. The user selects a button from the message dialog.
8. The appropriate callback is called.

4.19.7.2 WINRT API DETAILS

MessageFlyout Object
Property Description
title (optional) A short string that offers context for the content string
content (required) A string that represents the primary piece of information or question

being communicated by the message flyout.
commands (optional) A standard vector, for the developer to add or remove commands

(UICommand) to and from. If none is specified, a Close button is
provided.

Methods Description
showAsync() Creates the Async Object that is used to show the message dialog

asynchronously.

Elements of Mosh: the developer story Page 212 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

UICommand Object
Property Description
Label The name of the specified command that will be displayed in the UI.
Action The callback that is called when the user presses a button.

Async Object
Method Description
then(callback) Shows the message dialog, and calls the optional callback when the

dialog is closed for any reason.
Property Description
operation The Operation Object that represents the asynchronous operation of

showing a message dialog. Contains the start() method which shows
the message dialog.

4.19.7.3 SAMPLE JAVASCRIPT CODE

The following example creates a message dialog that contains a message. It contains the default Close
button and specifies a callback for when the dialog is closed.

var msg = new Windows.UI.Immersive.MessageDialog("Your trial has expired.
You must upgrade to continue using this app. ");

msg.showAsync().then(function () {
 //Navigate to the upgrade page when the user presses Close
});

The following example creates a message dialog that contains a title, content, and custom buttons with
callbacks.

var msg = new Windows.UI.Immersive.MessageDialog("Trial Expired", "To
continue using the app you can upgrade to either the basic or professional
versions. The professional version is more full featured than the basic
version. ");

msg.commands.append(new Windows.UI.Immersive.UICommand("Buy Basic",
function () {
 //Navigate to upgrade to basic page
}));

msg.commands.append(new Windows.UI.Immersive.UICommand("Buy Professional",
function () {

Elements of Mosh: the developer story Page 213 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 //Navigate to upgrade to professional page
}));

msg.commands.append(new Windows.UI.Immersive.UICommand("Extend Trial",
function () {
 //Extend the user’s trial
}));

msg.showAsync().operation.start();

4.19.7.4 REFERENCES

1. Message Dialog API Summary
2. Message Dialog Functional Spec

4.19.8 CONTEXT MENU

The context menu is a lightweight control that is for performing lightweight actions on text; specifically,
cut, copy and paste. It is great at showing a few commands and can be used for acting on an object
without a selection, usually one thing. The context menu only has five slots so it cannot be used as the
primary commanding surface for an application.

In general, apps should be rethought for touch in Windows 8. Most of the cases where commands in
toolbars and context menus were used in the desktop, should be replaced with direct and immersive
interaction. How could your command be re-envisioned and optimized for the form-factor? What parts
of your application could be best at touch, how can these be at the center. Example: Allow a user to
directly transform a picture with their fingers instead of introducing a “rotate” context menu command
for “Rotate.”

How the Context menu works:

1. The user launches a modern application
2. The user selects an item or presses and taps on an item.
3. The system fires the OnContextMenu event.

Elements of Mosh: the developer story Page 214 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4. The application receives the OnContextMenu event and creates the IPopupMenu object.
5. The application adds commands that apply to the selection by calling Command.Append.

Applications can specify name of the command and the callback to be called when the menu
item is clicked.

6. The applicant then specifies a rectangle that corresponds to the selection that the context menu
should be shown near. Optionally, the application can specify where the context menu should
appear relative to the select selection (the preferred side). The system may ignore the selection
rectangle and preferred side to keep the context menu on screen.

7. The system shows the context menu.
8. The user selects a command from the context menu or dismisses the context menu by tapping

outside of the context menu.
9. If a command was selected, the application is called back into with the selected command.

Otherwise, the onDismissed event is raised.
10. When it handles the command callback, the application can display a flyout.

4.19.8.1 CONTEXT MENU USAGE

4.19.8.1.1 APPROPRIATE USE OF CONTEXT MENUS

• For Cut, copy and paste
If you have an object that supports being cut, copied or pasted to the clipboard use the context
menu to show these commands. The context menu is the consistent way to perform clipboard
actions in the Mosh.

• If there is no way to indicate or create selection
If you have an object that needs to support commanding but it isn’t possible to indicate or
create selection you should use the context menu to show commands.

• Positioning the menu
Position the context menu relative to an object using relative positioning logic.

Elements of Mosh: the developer story Page 215 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• Showing and hiding commands
Context menus do not have a disabled state; show and hide commands when they are
contextually relevant to the selection. The context menu doesn’t show if there are no
commands in it. Avoid showing a command that would show an error.

• Command ordering
Add commands to the context menu in order of importance. Provide clipboard commands in the
standard order at the bottom of the menu.

• 5 Command limit
The context menu has a 5 command limit. Ask yourself the following questions if you are
struggling to fit commands in the menu.
§ Does this need to be a UI command, can it be represented with a direct manipulation?
§ Do you need this command, what would your experience be like without it? Are you

reducing concepts in increase confidence?
§ Is there another way to do this already? What is gained by duplicating in the context menu?
§ Does the item that this acts on have a 1up view? If so the command could be in the app bar

on the 1up view instead on the context menu in the collection.
§ Does this always need to be shown, or only in certain contexts?

Elements of Mosh: the developer story Page 216 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.19.8.1.2 INAPPROPRIATE USE OF CONTEXT MENUS

• Don’t use the context menu when direct manipulation or selection is possible

The primary way to command applications is through direct manipution or selection and an app
bar. When possible use an app bar or an app bar with selection rather than using a context
menu to act on items.

• Don’t use the context menu when you it isn’t required

If there is already a clear way to accomplish the scenario, do not create a context menu that
creates a second way to complete that scenario. Trust that users will find commands by
selecting an item or navigating to an item to act on it.

4.19.8.2 SAMPLE JAVASCRIPT CODE

Basic Menu in JavaScript Example:

This example creates a menu and sets up event handlers for when commands are selected.

<!doctype html>
<html>
 <head>
 <meta charset="utf-8">
 <style type="text/css">
 #kitty {
 width: 160px;
 height: 120px;
 margin: 200px;
 }
 </style>
 <script type="text/javascript">
 function showMenu(image) {
 var menu = new Windows.UI.Immersive.PopupMenu();

 // Use the convenience overloaded constructor.
 menu.commands.append(new Windows.UI.Immersive.UICommand("Pet",
onPet));

 // Or the default constructor and set the properties yourself.
 var feed = new Windows.UI.Immersive.UICommand();
 feed.label = "Feed";
 feed.invoked = onFeed;
 feed.id = "FeedID"; // Can be anything
 menu.commands.append(feed);

 menu.showAsync().operation.start();
 }
 function onPet() {
 // Pet the cute cat.

Elements of Mosh: the developer story Page 217 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 }
 function onFeed() {
 // Give her some food.
 }
 </script>
 </head>
 <body>
 <img id="kitty"
src="http://tailsmagazines.files.wordpress.com/2009/04/kitten.jpg"
oncontextmenu="showMenu(this); return false;" />
 </body>
</html>

4.19.8.3 REFERENCES

1. Context Menu API Doc
2. Context Menu Functional Spec

4.20 PERSONALITY

The personality, or look and feel of Windows, can be translated into your application by incorporating
three key visual elements:

• Layout: Clean layouts that emphasize content over chrome
• Typography: Typography rich UI that helps delineate hierarchy
• Animations: Responsive and cohesive animations

Balancing these foundational elements with aspects of your application's brand, color, content, and
interaction model will not only make your application look great, but will make it feel like cohesive
member of the Windows 8 application family and make it familiar to users.

The following sections describe how applications manifest the look and feel of Windows 8 to create a
single, cohesive experience across both the shell and individual applications.

4.20.1 ANIMATIONS

The Personality Visual Library (PVL) is an animation store that provides predesigned storyboards for
common UI scenarios, such as:

• Navigation & Content Refresh
• Loading: Loading your application
• Page Transitions: Switching between two different views or pages
• Content Transitions: Refreshing content within a page
• Pagination: Navigating to new pages for reading scenarios
• Crossfade: Refreshing the state of an element

Elements of Mosh: the developer story Page 218 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• Collection Manipulation
• Adds & Deletes: Showing new items, hiding deleted items, and reposition existing items.
• Search: Adding and deleting items for search filtering
• Selection: Selecting items in a collection to take action on them
• Drag and Drop: Rearranging and moving elements

• Chrome Interaction
• Showing custom App Bars: bring an off screen item into view, or slide a displayed item

out of view.
• Showing custom panels:

• User interaction
• Tap & click: Showing user feedback for tap and click events

• Informative UI
• Flyouts: Showing pop up messages that require user interaction
• Inline messaging: Showing or hiding more information for an item by expanding and

collapsing surrounding items.
• Temporary UI: Fading and out UI that is temporarily not visible

• + Others…

Using the PVL animations will be the easiest way for developers to quickly add animations into their UI
because it removes the need to design and tweak the animations from scratch for common application
scenarios. Because of this, the PVL is not meant to be easily customizable or be used as a building block
to create more complex animations. These animations are only intended to be used in the scenarios
specified.

At the core, the PVL is the definition store with predefined:

• Transforms
• Timing functions
• And Storyboards

Each animation storyboard may contain a combination of these elements as well as information from
the caller:

1. Transforms
PVL transform animations enable you to animate an object’s:

• Opacity
• Translation (2D)
• Rotation
• Scale (2D)
• Clip (2D)

Elements of Mosh: the developer story Page 219 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The use and combinations of these transforms are predefined in an animations storyboard and should
not be customized.

2. Timing functions
PVL describes curves using splines (cubic Bezier functions) that use 4 control points, as show in the
following illustration:

Timing functions are also predefined per animation should not be customized.

3. Targets
A target is the object or sets of elements that the animation is applied to. Depending on your
scenario, this may can be one or multiple elements.

For example, AddToGrid is an animation that can be used for adding an item to custom collection
controls. This animation takes two targets:

• Target: The element(s) that is being added
• Affected: The element(s) that needs to be reposition / moved because of the added item.

The caller is responsible for identifying the target for the animation.

4. Storyboarding
For each target, there is a set of transforms to be performed at specific times; these timed actions
form a storyboard. The PVL specifies the begin time and duration of each transform. In some
animations if the target supports a collection of items, there can be a staggered timing between
each item in the target collection.

For example, for the AddToGrid animation, the neighboring elements to be repositioned can be
staggered so the 1st starts moving at time 0ms, the 2nd starts at 5ms, the 3rd at 10ms, and so on, with a
cap of 500ms at which point all remaining items move together.

The storyboard is predefined per animation and should not be customized.

Elements of Mosh: the developer story Page 220 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

5. Static assets
There can be a standard theme file that should be used in conjunction with certain animations. For
example, a “focus” animation (used when a control receives keyboard focus) might include a specific
border around the control. PVL provides a reference to the asset files, which are stored in the
system in the same way that theme files are normally stored in a UX Theme. These files can be
retrieved via the existing Theming system’s API (for example, GetThemeBitmap)

The definition store in and of itself is agnostic to the animation or composition platform. So PVL can be
used as long as there is a component that can comprehend the transforms and can run the storyboards
according to the timing functions. To consume the PVL, it is important to note that:

• The client must know visual elements' beginning state and end state (such as size and position).
The client needs to manage content layout (PVL itself is agnostic to reflow logic).

• The client needs to render the animation, or use another compositor/animation engine to do so.

Currently, the PVL animations are exposed in two different ways, one for Jupiter clients and another for
HTML clients.

4.20.2 WWAS AND ANIMATIONS

For HTML + JavaScript web apps, the animations are provided through a collection of JavaScript
functions that map to the storyboards in the PVL definition store. These functions follow CSS3 drafts for
transform, transition and animations. These functions are part of the animations.js file (which will be
part of the SDK and can be included by 3rd party web apps), currently exposed under the
WinJS.UI.Animation namespace.

The majority of functions accept an element id (or an array of element ids) as well as an optional event
handler for when the animation has completed and, in some cases, other parameters. The PVL
JavaScript sets up a CSS transition/animation and initiates the animation; no further action is required
on the part of the caller in most cases. When the animation is complete, the PVL cleans up the
transition properties of the affected objects.

The following is a simple example for using the “fade out” animation, which changes the opacity at a
specific predefined rate:

// Win JS Files(ex: animations.js) must be referenced
Win.UI.Animation.fadeOut(document.getElementById("img1"));

Here a more involved example is the “addToList” animation, which adds an item to a list, while moving
its neighbors to make room for the new item.

Elements of Mosh: the developer story Page 221 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The addToList animation takes two parameters:

• The element that is being added.
• An array of affected elements that will have to be translated to make way for the new element.

// Win JS Files(ex: animations.js) must be referenced

var add = Win.UI.Animation.createAddToListAnimation(added, affected);

// Put elements into their desired post-animation states (in this case,
// insert new element into DOM tree, change position of affected
// objects if necessary)

add.execute(); // Run the animation

This example uses the addToList animation in a web app:

// Win JS Files(ex: animations.js) must be referenced

function insertObjectAtTopOfList(list) {
 var newItem = document.createElement("div");
 newItem.className = "listItem";

 var addToList = Win.UI.Animation.createAddToListAnimation(newItem,
list.children);

 list.insertBefore(newItem, list.firstChild);

 addToList.execute();
}

4.21 KEYBOARD / INPUT PANE

Elements of Mosh: the developer story Page 222 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The Input Panel enables users to enter input directly on the screen while in the new immersive
experiences of Windows 8. However, since the Input Panel will occlude applications, developers need a
way to listen to changes in the state of the Input Panel. They should be able to quickly and easily
understand how much of the window is obscured, so that they can fit their content into the available
space. Supported Frameworks will provide a default experience, but developers can customize that
experience at will. The default experience will ensure that the input field that caused the Input Panel to
invoke is scrolled into view, though the details of that implementation are framework specific.

The Input Panel APIs enable the application to listen for changes in the state of the Input Pane and
indicate whether the system should also handle the Input Pane event.

4.21.1 IHM SCENARIOS

The following are the different scenarios that can occur based on the type of handlers that are available
when the input panel is invoked:

1. No App Handler, No Host Handler
• Developer Ignores the InputPanelEvents
• Host ignores the InputPanelEvents
• Input Pane is shown, overlays application window.

2. No App Handler, Host Handler exists (This is the 90% case – the developer doesn’t have to do
any work, and the app host handles the Input pane)
• Developer ignores the InputPanelEvents
• Input Pane is shown
• Host does their default behavior

o For WWA host and WinRT UI, this behavior is to change the viewport without
triggering a new layout

3. App Handler present

• Developer sets up an event handler for the WinRT InputPane event
• InputPane is shown
• Host ignores the event
• The app reacts as specified by the developer.

It’s worth noting that the developer can use the Host’s reaction, and then add on additional
behaviors.

4.21.2 SAMPLE JAVASCRIPT CODE

Reacting to input pane showing/hiding/hidden events:

Elements of Mosh: the developer story Page 223 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

// Reacting to the Input Panel Showing

Windows.UI.Immersive.InputPane.getForCurrentView().addEventListener("showi
ng", onInputPaneShowing);

Windows.UI.Immersive.InputPane.getForCurrentView().addEventListener("hidin
g", onInputPaneHiding);

function onInputPaneShowing(e)
{
 var occludedRect = e.occludedRect;

 // For this hypothetical application, the developer decided that 400
pixels is
 // the minimum height that will work for her current layout. When the
 // app gets the InputPaneShowing message, the pane is beginning to
animate in.

 if (occludedRect.Top < 400)
 {
 // In this scenario, the developer decides to remove some elements
(perhaps
 // a fixed navbar) and dim the screen to give focus to the text
element
 var elementsToRemove =
document.getElementsByName("extraneousElements");

 // The app developer will not use default framework animation
 // Note that the IHM uses the Win.UI.Animations.hidePanel and
 // Win.UI.Animations.showPanel animations for its timing curves
 _StartElementRemovalAnimations(elementsToRemove);
 _StartScreenDimAnimation();
 }

 // This developer does not want the framework’s focused element
visibility
 // code/animation to clash with his/her own
 e.ensuredFocusedElementInView = true;
}

function onInputPaneHiding(e)
{
 // In this case, the Input Pane is leaving. The developer can use
 // this message to start animations.
 if (_ExtraElementsWereRemoved())
 {
 _StartElementAdditionAnimations();
 }

 // This developer does not want the framework’s focused element
visibility
 // code/animation to clash with his/her own
 e.ensuredFocusedElementInView = true;

Elements of Mosh: the developer story Page 224 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

}

Using default animations in cases where you cannot do your own animation or handle the event due to
cross-boundary security issues:

function OnLoad()
{

Windows.UI.Immersive.InputPane.getForCurrentView().addEventListener("showi
ng", onInputPaneShowing);

Windows.UI.Immersive.InputPane.getForCurrentView().addEventListener("hidin
g", onInputPaneHiding);
}

var IsFacebookIframeFocused = false;

function onInputPaneShowing(e)
{
 // This hypothetical app hosts a facebook iframe
 // This app is not able to manipulate anything within the iframe, so
 // it will depend on the framework to do its default animation work
 IsFacebookIframeFocused = (document.activeElement.id ==
"FacebookIFrame");
 if (!IsFacebookIframeFocused)
 {
 _DoCustomApplicationAnimation();

 // This developer does not want the framework’s focused element
visibility
 // code/animation to clash with his/her own
 e.ensuredFocusedElementInView = true;
 }
}

function onInputPaneHiding(e)
{
 If (!IsFacebookIframeFocused)
 {
 _DoCustomApplicationAnimationAgain();
 e.ensuredFocusedElementInView = true;
 }
}

4.21.3 REFERENCES

1. API spec
2. M3 Dev spec
3. M3 Functional spec

Elements of Mosh: the developer story Page 225 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

4.22 FILE ASSOCIATIONS AND PROTOCOL EXTENSIONS

4.22.1 FILE ASSOCIATIONS

Files with a common file name extension (.doc, .html, and so on) are of the same type. When
developing an application that uses files, you can use existing file types. For example, if you create a
new text editor, you might use the existing .txt file type. In other cases, you might need to create a new
file type. In either case, you can provide the necessary information about file associations in the
extensions portion of the application manifest. The following example registers an application as a
handler for the “.foo” file type.

<Extension Category="windows.fileTypeAssociation">
 <FileTypeAssociation Name="foo">
 <DisplayName>Foo File</DisplayName>
 <Logo>RESOURCES\fooLogo.png</Logo>
 <InfoTip>A foo file</InfoTip>
 <EditFlags OpenIsSafe="true" AlwaysUnsafe="false" />
 <SupportedFileTypes>
 <FileType MediaType="images/png">.foo</FileType>
 </SupportedFileTypes>
 </FileTypeAssociation>
</Extension>

4.22.1.1 SYSTEM FLOW FOR FILE ASSOCIATIONS

1. A modern application that declares one or more file associations is deployed.
2. The application is added to the OpenWith list for its declared file types.
3. The user opens a file by double-clicking or selecting Open from the context menu.
4. If the user has selected the application as their default the app is activated by the Modern

Activation process.
5. The application receives an activation event with a contract ID of Windows.File.
6. The application uses the activation eventArgs to obtain the vector of IStorageFile objects that

are to be opened by the application.

The following example handles activation for the Windows.File contract:

<script type="text/javascript">

function activatedHandler(eventArgs)
{
 if (eventArgs.contractId == "Windows.File")
 {
 var fileList = eventArgs.files;

Elements of Mosh: the developer story Page 226 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 //act on the file(s) populated in the fileList var.
 }
}

Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
activatedHandler, false);

</script>

4.22.2 PROTOCOL EXTENSIONS

Applications can utilize protocol extensions to provide functionality that is activated by a URI (for
example, mailto:foo@bar.com). When developing an application that uses protocols, you can use
existing, well-defined protocols or you can create your own. In either case, you can provide the
necessary information about protocols in the extensions portion of the application manifest. The
following example registers an application as a handler of the mailto protocol.

<Extension Category="windows.protocol">
 <Protocol Name="mailto" />
</Extension>

4.22.2.1 SYSTEM FLOW FOR PROTOCOL EXTENSIONS

1. A modern application that declares one or more protocol registrations is deployed.
2. The application is added to the Open With list for its declared protocol schemes.
3. The user clicks on a protocol link, such as mailto:foo@bar.com.
4. If the user has selected the application as their default the app is activated by the Modern

Application Activation process.
5. The application receives an activation event with a contract ID of Windows.Protocol.
6. The application uses the activation eventArgs object to obtain the full protocol URI.

The following example handles activation for the Windows.Protocol contract:

<script type="text/javascript">

function activatedHandler(eventArgs)
{
 if (eventArgs.contractId == "Windows.Protocol")
 {
 var uri = eventArgs.uri;
 //act on the protocol populated in the protocol var.
 }
}

Windows.UI.WebUI.WebUIApplication.addEventListener("activated",
activatedHandler, false);

Elements of Mosh: the developer story Page 227 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

</script>

4.22.3 LAUNCHING FILES OR PROTOCOLS

Modern applications can invoke the default handler for a particular file or URI. For example, a modern
mail app can receive file attachments and pass them to the proper handler when the user attempts to
open them. To do this, applications must use the new WinRT Launcher API. This API enables
applications to hand off files or URIs to another application, which opens in its proper security context.
Existing methods for accomplishing this task, such as ShellExecute, do not work in a modern app
because they do not launch the handler application in the correct security context.

4.22.3.1 SYSTEM FLOW FOR LAUNCHING FILES OR PROTOCOLS

1. A modern application creates an object, StorageFile, or URI to pass to another app.
2. The application UI presents the intent to launch the object to the end user.
3. The user chooses to open the object.
4. The application calls the LaunchDefaultProgramForFile or LaunchDefaultProgram method on

the Windows.UI.Activation.Launcher API
5. The default handler for the file or URI is launched and passed the object during activation.

The following example invokes a file handler:

function LaunchFileHandler(file)
{
 Windows.ApplicationModel.Launcher.launchDefaultProgramForFile(file);
}

The next example invokes a URI handler:

function LaunchProtocolHandler(uri)
{
 Windows.ApplicationModel.Launcher.launchDefaultProgram(uri);
}

4.22.4 WINRT API DETAILS
Windows.UI.Activation.FileActivationContext
Methods Description
Files Returns the vector of StorageFile objects that were passed to the

application during activation.

Elements of Mosh: the developer story Page 228 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Windows.UI.Activation.ProtocolActivationContext
Methods Description
Uri Returns the Uri object that was passed to the application during activation.

Windows.UI.Activation.Launcher
Methods Description
InvokeFileHandler Passes the specified StorageFile to the application that is the default

application for files of that type.
InvokeUriHandler Passes the specified Uri to the application that is the default application for

that protocol.

4.22.5 REFERENCES

1. Trust Association Launching Functional Spec
2. Trust Association Launching Dev Design Spec
3. Trust Association Launching API Summary Doc
4. Samples at: \\appx-share\public\aandrejs

4.23 CREDENTIAL MANAGEMENT

With the proliferation of online services, credentials are playing an ever larger role in the typical web
user’s experience; users manage an ever growing set of username and password combinations.
Predictably, users are responding to this by choosing a single password or small set of passwords that
they use across all their online services.

4.23.1 WEB SERVICE AUTHENTICATION

The Web Authentication Broker APIs allow modern applications to authenticate and get an authorization
before they can connect to Internet services like Live, Facebook, and Twitter using protocols such as
OAuth 2.0. Usually this involves having a user to logon to the online service provider and go through an
authorization step. The following are example of a typical user flow in the browser (here a user is
connecting his Live account to Facebook).

Elements of Mosh: the developer story Page 229 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Elements of Mosh: the developer story Page 230 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

In the desktop world applications have to use browser controls to implement this flow. In the browser
world a JavaScript popup is most often used.

In Windows 8 the Web Auth APIs provide an easy way for application to complete such flows by
exposing a method that lets applications specify a starting URL and a terminating URL. The API then
creates a modern dialog over the application window that displays web pages (starting URL is the first
page that gets displayed) necessary to complete the task. When a terminating URL is reached, the
modern dialog is taken down and the API returns the authentication/authorization data (usually the last
URL + query strings, fragments, etc) back to the application. Note that the web pages are hosted in the
process outside of the application process to keep user credentials isolated from the calling app.

4.23.1.1 WINRT API DETAILS

Warning: The following API syntax is for the PDC-4 build. It will be updated for the PDC-3 build to
support new async call pattern, global WinRT namespace reorganization, as well as new functionality to
support single sign on scenarios. See references to links to updated API documentation.

Elements of Mosh: the developer story Page 231 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Class WebAuthenticationBroker : IWebAuthenticationBrokerStatics
Method/Property Description
AuthenticateAsync Creates a WebAuthenticationOperation that is then used to

complete the web authentication and get the results back.

The method takes two parameters, a request URL and a callback
URL. The request URL is the URL for the first web page to render and
contains protocol parameters required by the online service
provider. The callback URL is a terminator. The web auth broker
matches (left substring) all URLs that it is about to navigate to and if
the URLs match, the navigation is terminated. Note that last URL is
never navigated to.

Class WebAuthenticationOperation : IWebAuthenticationOperation
Method/Property Description
Completed Gets/Sets the event hander for the operation completion.
GetResults Returns the WebAuthenticationResult object that has the results of

the async operation.

Class WebAuthenticationResult : IWebAuthenticationResult
Method/Property Description
ResponseData Returns the URL that the web auth broker matched with the callback

URL including query string and fragment portions. Application should
use this URL to extract the protocol data such as authorization token
from it according to the guidance provided by the online service
provider.

ResponseStatus Returns the status with which the operation has completed. There
are distinct values for user canceling the operation as well as for
HTTP protocol specific errors. For all other Win32 errors an
exception is thrown.

ResponseErrorDetail Used to obtain the HTTP error code when ResponseStatus is set to
ErrorHttp.

4.23.1.2 SAMPLE JAVASCRIPT CODE

//this function is called when a user clicks on the Facebook button within
a modern app in order to authentication to Facebook and access photos
stored in Facebook’s site

function appUserClickOnFaceBookButton()
{

 var webAuthenticationOperation =

Elements of Mosh: the developer story Page 232 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Windows.Security.Authentication.WebAuthenticationBroker.AuthenticateAsync(
 new
Uri("https://www.facebook.com/login.php?api_key=123&display=popup"),
//request Uri
 new Uri("http://login.kodak.com/")); //callback Uri

 webAuthenticationOperation.then(
 function (webAuthenticationOperation)
 {

 var webAuthenticationResult =
webAuthenticationOperation.GetResults();

 if (webAuthenticationResult.ResponseStatus !=
Windows.Security.Authentication.WebAuthenticationStatus.Success)
 return;

 var responseData =
webAuthenticationResult.ResponseData;

 //app now can obtain the accessToken from responseData.

 }
);
}

4.23.1.3 REFERENCES
1. Quick Start Guide in Java Script
2. Functional spec
3. Functional spec
4. Dev spec
5. API spec (PDC-4)
6. API Spec (PDC-3 and later)

4.23.2 CREDVAULT

The credential management feature provides a common way to store and manage passcodes,
passphrases, and other identification in a safe and secure store. This secure storage mechanism, known
as the Windows Credential Value or CredVault, makes using passwords and user names easy—users only
need to remember their Windows login information to login to any site.

Since credentials management is an important and sensitive task, the Windows Credential Vault
provides the means to securely store such important information and exposes a simple, safe set of
WinRT APIs for accessing this information.

4.23.2.1 SAMPLE JAVASCRIPT CODE

Elements of Mosh: the developer story Page 233 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Credential Management:

//Initialization
var vault = new Windows.Security.Credentials.PasswordVault();

 var cred = new Windows.Security.Credentials.PasswordCredential();
 cred.Resource = "example.com";
 cred.Username = "user";
 cred.Password = "password";

 var cred = new
Windows.Security.Credentials.PasswordCredential("example.com", "user",
"password");

//Writing credentials
vault.Add(cred);
vault.Add(new
Windows.Security.Credentials.PasswordCredential("example.com", "user",
"password"));

//Searching for credentials
var findCreds = vault.FindAllByResource("example.com");
var creds = vault.GetAll();

//Reading credentials
var cred = vault.Get("example.com", "user");

//Deleting credentials
vault.Remove(cred);

//Using the credential
 if (cred.Password == null)
 cred.GetPassword();
 alert("username: " + cred.Username + " and password: " +
cred.Password);

4.23.3 REFERENCES

1. Credential Management Dev Spec

4.24 SUMMARY OF MODERN APPLICATION EXTENSION POINTS

Contract Required Manifest Registration Flow Location Activation Required
Tiles Yes Yes MoGo Yes
Secondary Tiles No No MoGo Yes
Tile Badges No Yes MoGo No

Elements of Mosh: the developer story Page 234 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Lock Screen
Notifications

No Yes Lock Screen No

Toasts No Yes MoBody Overlay Yes
Push Notifications No No MoGo Yes
Snapping Yes No MoBar No
Suspend/Resume
(PLM)

Yes Background tasks only App Code No

Search No Yes Charms Bar Yes
Share No Yes, Targets Only Charms Bar Targets Only
Settings No No Charms Bar No
File Picker No No File Picker No
File Picker
Extension

No Yes File Picker Yes

File System Broker No Yes – for accessing
libraries

App Code No

Connect-Print No No Charms Bar No
Connect-PlayTo No No Charms Bar No
Connect-Send No Yes, Targets Only Charms Bar Targets Only
Splash Screen Yes Yes Any app-

instance launch
Shows on app
activation

Keyboard / Input
Pane

No No App Code No

File Associations
and Protocol
Extensions

No Yes, Targets Only Clicking File or
Protocol link

Targets Only

Credential
Management

No No App Code No

5 APP STORE AND APPLICATION ACQUISITION

The App Store is where consumers discover and acquire the best-in-class modern Windows applications
for all their needs. As a result, the Store is the best way for developers and publishers to monetize their
offerings and works best with the Windows 8 modern application platform.

5.1 THE ONBOARDING AND CERTIFICATION EXPERIENCE

For each product sold through the store, developers will provide key information which will enable users
to make informed purchase decisions. This includes user visible information about the offering such as
descriptive information, screenshots, and price. The upload of the product as well as supplying
additional marketing information occurs through the Developer Portal. Developers will also be able to

Elements of Mosh: the developer story Page 235 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

manage their application offerings throughout the offering life-cycle. You can add, update, and remove
offerings from the App Store catalog and determine the status of an application that is being processed
for approval.

5.1.1 DEVELOPER PORTAL HIGH LEVEL DIAGRAM

Applications submitted to the store go through quality checks before being made available to
customers. The certification process involves automated and manual testing of the application as well
as static validation to verify that it meets all the policies and requirements of the App Store.

5.1.2 CERTIFICATION WORKFLOW HIGH LEVEL DIAGRAM

Addition of
Anti-Piracy
to Packages

Licensing
and

Enforcement
Integration

Metadata
Definition

Metadata
to support
Parental
Controls

Metadata
Definition

Metadata
for Rich

Targeting

Upload
Manager

Package Upload

Metadata
Extraction

Authentication

ID Verification

Delegation of Roles

Billing and Payment
Definition

Account Setup

Sign Up
and

Developer Portal
Workflow

Catalog
Management Product State

Reporting

Onboarding
Workflow

Quality Testing

Policy Testing

Package Upload

Process

App MetadataDefinition Process

App Certification

Process

Ap
p

Pa
ck

ag
in

g
Pr

oc
es

s

App Metadata

Definition Process

Required for

Certification
Reporting

Package(s)

Product Definition

Set(s) of Listing Data

In-App Purchase
Prices

Modern Apps

Deployment of
.appx packages

Windows
Update

Pr
ov

id
e p

ac
ka

ge
s

fo
r d

ep
lo

ym
en

t
Product Definition

Set(s) of Listing Data

Legacy Apps

Elements of Mosh: the developer story Page 236 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

5.1.3 REFERENCES

1. App Store Developer Policies // update link

5.2 DISCOVERY POINTS: BROWSE, SEARCH, LISTS, AND DEEP LINKING

The App Store client consumer experience provides several ways for users to find and discover
applications to purchase. Users may search and browse by categories and subcategories and can filter
and sort by price, rating, release date, and so on.

The App Store Homepage:

Unsubmitted

Ready for
certification

Certification in
progress Certified

Live

Pass

 Fail

Release date
is current

Not present in
dev portal

Dev adds
App/metadata

Dev pushes
button on
dev portal

Certification
workflow picks

the app

Rejected
Edit/Save

Dev cancels release

Dev cancels
release

Dev cancels release

Edit/Save

Elements of Mosh: the developer story Page 237 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Browsing the App Store:

Elements of Mosh: the developer story Page 238 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

There are landing pages that contain editorial/featured content and data-generated content (such as
Most Popular Applications and Applications Recommended for You [based on purchasing history]).
Applications with a higher reputation will have a higher probability of being featured on a landing page.

5.3 SELLING THE APP: PRODUCT DESCRIPTION PAGE AND ACQUISITION

A product description page contains the key information about an application, and it’s where customers
learn to use, acquire, and rate and review the application. The data on this page is provided primarily by
ISVs via metadata extracted from the package and provided explicitly at onboarding time, but also
contains data from users in the form of ratings and reviews. Developers use this page to market their
applications to customers.

Figure 8: An product description page

How acquisition works:

1. The user presses button to try or buy a product.
2. The store client displays confirmation UI for paid apps (trials and free apps do not require

confirmation) and the user confirms the purchase.

3. Re-authentication may occur for paid application purchase depending on user settings.

4. The payment is processed and license is downloaded to the client.
5. Application installation starts automatically; progress can be seen in the store Installs page.

Elements of Mosh: the developer story Page 239 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

5.4 INSTALL UX

Once a user initiates acquisition of the application, the user will remain in the store and is taken back to
their previous page in order to allow the user to continue shopping for applications. If a user wishes to
view detailed installation progress, there is a page in the store to do so.

App install and update progress:

Users can pause a download in progress by tapping the tile. This pauses the download until the user taps
the tile again as a toggle.

5.5 LICENSING AND THE IN-APP PURCHASING EXPERIENCE

The store provides a mechanism for applications to check the state of a user’s license for the
application. There are two primary uses for the licensing: providing trials and enabling in-app purchases.

5.5.1 TRIAL TO FULL LICENSE CONVERSION

The App Store allows developers to provide time-limited trials for the products they sell. The developer
can opt to make it a simple time-limited trial or to restrict functionality during this trial period. The user
can convert their license from a trial to a full license within the store client user experience. Application
developers can also begin the upgrade from within the application itself.

Elements of Mosh: the developer story Page 240 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

How in-app trial conversion works:

1. The application triggers the in-app conversion flow through one of the following mechanisms:
a. The application provides a call to action, which the user selects.
b. The application triggers the conversion flow based on an event, such as the trial

licensing expiring.
2. The user is presented with App Store user interface to confirm their purchase.
3. Re-authentication occurs if user has not authenticated within a 5-minute window.
4. The payment is processed and license is modified.
5. An updated license is returned to application through a callback.

5.5.1.1 LIMIT APP FUNCTIONALITY DURING TRIALS

A developer wants to enable a trial but prevent the user from “saving” documents during the trial to
encourage them to purchase the full version. The developer includes a “save” button in the HTML:

<input type="button" id="save" />

He creates a function which runs when the page is done loading which disables the “save” button if
there’s only a trial license:

// save a reference to LicenseInformation static class
var currentProduct = Windows.ApplicationModel.Store.CurrentProduct;
var licenseInformation = currentProduct.LicenseInformation;

// when the page is done loading, check for trial license
document.onreadystatechange = initializePage;
function initializePage() {
 if (document.readyState == "complete") {
 // check license
 checkLicense();
 }
}

function checkLicense() {
 // disable the button if only running with a trial license
 var saveBtn = document.getElementById('save');
 if (saveBtn != null)
 saveBtn.disabled = licenseInformation.isTrial;
}

5.5.1.2 PURCHASE FULL LICENSE WHEN TRIAL EXPIRES

The developer wants the app to be alerted if the trial expires while running so he can offer the user to
upgrade to a full license. He does several things:

1. He registers a handler for the LicenseChanged event in the initializePage function.

Elements of Mosh: the developer story Page 241 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

1. He expands the license check code to check for expiration.
2. Adds a function to offer the customer a chance to pay for a full license.

// save a reference to LicenseInformation static class
var currentProduct = Windows.ApplicationModel.Store.CurrentProduct;
var licenseInformation = currentProduct.LicenseInformation;

// when the page is done loading, check for trial license
document.onreadystatechange = initializePage;
function initializePage() {
 if (document.readyState == "complete") {
 // check license
 checkLicense();
 // register a function for license status changed notifications
 licenseInformation.addEventListener("LicenseChanged",
checkLicense);
 }
}

// checks the status of the trial license and takes action if it’s now
Expired
function checkLicense() {
 // disable the button if only running with a trial license
 var saveBtn = document.getElementById('save');
 if (saveBtn != null){
 saveBtn.disabled = licenseInformation.isTrial;
 }
 // if trial license has expired, navigate to a trial expired page
 if (!licenseInformation.isActive){
 document.location = "trialexpired.html";
 }
}

// button or link on trialexpired page calls this method to buy full
version of the application
function trySellUpgrade() {
 // launch the purchase UX
 var requestPurchaseOperation =
currentProduct.requestProductPurchaseAsync();
 requestPurchaseOperation.completed = completePurchaseRequest;
 requestPurchaseOperation.start();
}

// handle the purchase request completion
function completePurchaseRequest(requestPurchaseOperation) {
 if (requestPurchaseOperation.status == AsyncStatus.completed) {
 requestPurchaseOperation.close();
 if (licenseInformation.isActive) {
 // show that the purchase succeeded here…
 ...
 }
 }
 else if (requestPurchaseOperation.status == AsyncStatus.cancelled ||

Elements of Mosh: the developer story Page 242 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 requestPurchaseOperation.status == AsyncStatus.error) {
 // show that purchase did not succeed here…
 ...
 }
}

5.5.2 IN-APP PURCHASES

Applications themselves can sell items, such as addition content, levels, or virtual goods. The store
models these purchases as modifications to the user’s application license.

How in-app purchases work:

1. The application triggers the in-app purchase flow through one of the following mechanisms:
a. The application provides a call to action, which the user selects.
b. The application triggers the conversion flow based on an event.

2. The user is presented with App Store user interface to confirm their purchase
3. Re-authentication occurs if user has not authenticated within the past 5 minutes.
4. The payment is processed and license is modified.
5. An updated license is returned to callback.

5.5.2.1 COMMERCE SNIPPETS – FREE APP SELLS EXTRA FEATURE

A developer wants to provide a feature which requires the user to pay extra to use it. They define a
feature purchase on the developer web portal and then add code to their app to unlock the feature with
a purchase that’s launched from within their application.

Their app might have a button that launches the feature as follows:

<input type="button" id="extraFeature" />

This code checks for the feature’s license whenever the user attempts to use the feature and if it doesn’t
exist, it attempts to sell the license to the user:

// save a reference to LicenseInformation static class
var currentProduct = Windows.ApplicationModel.Store.CurrentProduct;
var licenseInformation = currentProduct.LicenseInformation;

// the string value assigned in the App Store dev portal for purchasing
the new feature
var extraFeatureID = "Feature 1";

// prompts user to buy feature
function trySellFeature() {
 // give them the option to buy the feature

Elements of Mosh: the developer story Page 243 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 var confirmResult = confirm("Would you like to purchase this
feature?");
 if (confirmResult == true) {
 // if they want to purchase the feature, launch the store purchase
UX to confirm the purchase
 var requestPurchaseOperation =
currentProduct.requestFeaturePurchaseAsync(extraFeatureID);
 requestPurchaseOperation.completed = completePurchaseRequest;
 requestPurchaseOperation.start();
 }
}

// handle the purchase request completion
function completePurchaseRequest(requestPurchaseOperation) {
 if (requestPurchaseOperation.status == AsyncStatus.completed) {
 requestPurchaseOperation.close();
 if (licenseInformation.isActive) {
 // show feature UX
 document.location = "extrafeature.html";
 }
 }
 else if (requestPurchaseOperation.status == AsyncStatus.cancelled ||
 requestPurchaseOperation.status == AsyncStatus.error) {
 // show that purchase did not succeed here…
 alert("The purchase did not succeed");
 }
}

// launches the extra feature
function launchExtraFeature() {
 // check if they have an active license for the feature
 if
(licenseInformation.featureLicenses.lookup(extraFeatureID).isActive) {
 // show feature UX
 document.location = "extrafeature.html";
 } else {
 // give user option to buy extra feature if they haven't already
 trySellFeature();
 // doesn’t navigate away – user is left in same context to try
launching
 // feature again after modal purchase operation finishes
 }
}

// when page is done loading, finish initializing the application
document.onreadystatechange = initialize;
function initialize() {
 if (document.readyState == "complete") {
 // register click handler for launching extra feature
 var launchFeatureBtn = document.getElementById('extraFeature');
 if(launchFeatureBtn != null)
 launchFeatureBtn.onclick = launchExtraFeature;
 }
}

Elements of Mosh: the developer story Page 244 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

The example above just launches the App Store purchase UX to sell the feature. If the developer wants
to show information about the item(s) before launching the store’s purchase UX, they can get
information about it through us – we get it indirectly from our web services. They can show the name
and price for the feature using another button:

<input type="button" id="sell_button" />

To do this, they first make changes to the initialize function to register the button’s event handler and
call the load listing information function:

// when page is done loading, finish initializing the application
document.onreadystatechange = initialize;
function initialize() {
 if (document.readyState == "complete") {
 // register click handler for launching extra feature
 launchFeatureBtn = document.getElementById('extraFeature');
 if(launchFeatureBtn != null)
 launchFeatureBtn.onclick = launchExtraFeature;

 // register click handler to sell extra feature
 sellFeatureBtn = document.getElementById('sell_button');
 if (sellFeatureBtn != null) {
 sellFeatureBtn.onclick = trySellFeature;
 sellFeatureBtn.disabled = true;
 }

 // load the listing metadata information to advertise the
feature's name and price
 loadListingInformation();
 }
}

// reference to the sell button
var sellFeatureBtn;

Then add this code, which loads the listing information, to the feature purchasing sample above:

// load the listing metadata information for this application
function loadListingInformation() {
 var loadListingOperation =
currentProduct.loadListingInformationAsync();
 // callback function to update UX once listing metadata information
has completed loading
 loadListingOperation.completed = loadListingCompleted;
 loadListingOperation.start();
}

// process the completion of the listing metadata load operation
function loadListingCompleted(loadListingOperation) {

Elements of Mosh: the developer story Page 245 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 if (loadListingOperation.status == AsyncStatus.completed) {
 // if the operation completed, load the listing object
 var prodListing = loadListingOperation.getResult();
 // set the button's label to show the name and price of the
Feature and enable the button
 if (sellFeatureBtn != null) {
 sellFeatureBtn.value =
prodListing.FeatureListings.lookup(extraFeatureID).name + ": " +
prodListing.FeatureListings.lookup(extraFeatureID).formattedPrice;
 sellFeatureBtn.disabled = false;
 }
 // close the async operation object
 loadListingOperation.close()
 }
}

5.6 SERVICING & UPDATING THE APP

The App Store provides a mechanism for developers to deliver updates to their products. To submit an
update, you perform the same steps as when you upload a new product. When you update the product,
you can also make changes to the product metadata. Once an update is released, the product is updated
on client machines that have the product installed. Users must perform manual updates. Manual
updates require the user to initiate updates from within the store client. Updates may be pre-
downloaded opportunistically to make the act of updating fast and fluid.

5.7 ANALYTICS & GETTING PAID

The Developer Portal provides detailed analytics about the product. The portal provides a number of
reports, including adoption, quality, usage, revenue, and market data mining reports.

The following illustration shows a sample reports page.

Elements of Mosh: the developer story Page 246 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Elements of Mosh: the developer story Page 247 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

5.8 UNINSTALL UX

Products are uninstalled from application tiles in MoGo. The uninstall user experience is designed to:

• Prevent accidental uninstalls.

• Provide enough information so that the user can make the right decision about uninstall.

• Be simple.

Uninstall is initiated by invoking the tile context menu (by pressing and tapping or right-clicking the tile),
and selecting Uninstall. This uninstalls all applications in the product. It is not possible to uninstall
individual applications within a product. Any pinned content is also removed.

When uninstall is initiated, a flyout is shown to let the user confirm the uninstall operation.

As soon as the user confirms uninstall, the tiles are immediately removed.

6 DEVELOPER TOOLS AND DEBUGGING

The tooling and debugging experience of the modern application developer consists of four major
stages:

1. Search and discovery
2. Acquisition of tools
3. Application development
4. Debugging

6.1 SEARCH AND DISCOVERY

The debugging and tools story begins with effective search and discovery. The first result returned by
search engines includes the Developer Center, which contains all of the information necessary for
building modern apps. The Developer Center provides a school-like learning experience; a series of
modules, or lessons, are available for developers to work through, learning at their own pace. Technical
documentation on MSDN supports these lessons, and functions as the Developer Center library.

Elements of Mosh: the developer story Page 248 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Additionally, forums will be hosted, providing a central location for Windows 8 developers to request
and provide peer guidance.

The Developer Center also functions as the central repository for application templates and sample code
that you can copy, paste, and modify for your applications. Many of these samples and templates will be
provided by Windows, but the Developer Center will also highlight the best 3rd-party developer template
and sample submissions.

This sample code follows Windows coding guidelines; using it can simplify the development process and
make it easier to follow Windows guidelines and best practices.

The Windows Developer Center will guide developers to the next stage of the process, Acquisition of
Tools, by prominently linking to both Visual Studio Express, and the full Windows SDK. Either of these
downloads provides everything a developer needs to create, test and publish Modern Applications.

6.2 ACQUISITION OF TOOLS

6.2.1 VISUAL STUDIO

Visual Studio Express is a full-featured IDE that enables Modern Application development in any
supported programming language. The Visual Studio tools handle tasks such as manifest creation and
validation, generation of WWA metadata, pre-generated accessible markup, and localization support.
The IDE will provide control objects, such as radio buttons, in the drag-and-drop designer in order to
further simplify application development.

 Visual Studio express supports Windows Web Applications and native applications (C/C++, C#, VB).

To simplify the development experience, Visual Studio Express will:

• Build .APPX packages.
• Automatically generate localization indices.
• Provide a GUI Package Manifest Designer that includes:

a. Support for controlling Application UI (primarily Tile content)
b. Support for adding capabilities to applications.
c. Support for adding contracts to applications.
d. Support for adding Content URIs
e. Options to control application packaging.

• Support multiple layout development (docked, portrait, landscape, full screen, and so on).
• Enable developers to debug modern applications running in an immersive window.

a. RDP loopback session to allow developers to see their application running while
debugging

Elements of Mosh: the developer story Page 249 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

b. DWM window to provide a snapshot of the application while debugging (targeted at
high fidelity graphics)

• Provide C# and C++ developers with public symbols they can provide to the Windows Store to
enhance the provided developer analytics

• Provide Windows Store validation at development time to provide developers with confidence
that their application will be accepted following submission

Visual Studio will ship with the Modern SDK, a simplified version of the Windows SDK specifically
designed for Modern Application development. The Modern SDK only contains tools that enable key
developer scenarios, and it only contains APIs that have been approved for use by the App Store.

The following tools will be included in the Modern SDK (not guaranteed to be either a final or exhaustive
list):

• MakeCert.exe: A tool used to generate signing certificates.
• CertMgr.exe: A tool used to manage signing certificates on a machine.
• SignTool.exe: A tool used to sign files with a signing certificate.
• MakePRI.exe: A tool used to localize an application.
• WSLK: A tool used to verify applications before submission to the App Store.

The limitations on the Modern SDK make it difficult to write applications that will not pass App Store
onboarding, and minimizes the total size of Visual Studio Express.

6.2.2 EXPRESSION BLEND

In addition to Visual Studio, developers are free to use Expression Blend to build their applications.
While Visual Studio primarily targets developers and coding-intensive projects, Expression Blend targets
designers and makes it easy to build great looking Modern Applications. While you can write and test
code from Blend, its primary offering is a WYSIWYG design surface that has been engineered to provide
a high fidelity representation of what an application will look like, and how it will perform, when
completed and installed by an end user.

The WYSIWYG design surface is able to deliver a compelling experience by running the application
unbeknownst to the developer. This allows for innovative features, including real time application
interaction and rendering of the HTML/CSS/JS elements so that developers and designers can see the
true behavior of the application while they design it.

Expression Blend will come in two flavors; one is targeted at WWAs, while the other is optimized for
MCAs.

6.2.3 ADDITIONAL CHOICES

Elements of Mosh: the developer story Page 250 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

While Visual Studio will be the recommended development environment, other environments are
supported. Using a text editor such as Vi or Notepad++ along with the Windows SDK and PowerShell
cmdlets is the most lightweight option available, though clearly not full featured. 3rd parties, such as
Adobe and Eclipse, will also be able to provide tools for Modern Application development.

The full Windows SDK will be available for these developers. This will allow 3rd party IDEs to create their
own Modern Application development environment, as well as enabling the command line/test editor
developers. All Modern Application tools shipped in the Modern SDK will be included in the full SDK, as
well as:

• MakeAppx.exe: A tool used to create .appx packages

In addition to containing the tools necessary for Modern Application development, this SDK SKU will
include desktop and driver utilities that are not appropriate for Modern Applications.

6.3 APPLICATION DEVELOPMENT

The Modern Application model has been designed for simplicity, but some constructs may initially
appear obtuse to new developers. To help developers transition to the new model, our tools that
contain accurate and helpful developer documentation. For any given feature, a variety of
documentation exists, ranging from short, scenario-focused topics to whitepapers that describe the
Modern Application model in great detail. This documentation will be designed to guide developer
through the overall experience, with emphasis being given to core development, which breaks into a
few distinct pieces:

• Create and Edit: The developer knows what they want to build, and begins implementing their
design.

• Compile, Build and Test: The developer begins testing their application, validating functionality
and improving the design.

• Debug and Diagnose: The developer has built major pieces of their application and is focused on
diagnosing and fixing bugs in their program.

• Package and Submit: The developer is happy with their application and is ready to submit it to
the Windows Store. They build a package and onboard it via the Developer Portal.

Once an application has been live on the Store, developer may also elect to go back and improve their
application based upon feedback and analytics surface via the Store itself.

6.4 DEBUGGING

Debugging of modern applications is fully supported by Visual Studio, and multiple immersive window
modes are available to ease development. In order to install and debug a Modern Application, a few
things must happen.

Elements of Mosh: the developer story Page 251 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• A Developer License must be installed on the machine
• The application must be fully deployed
• If the application is a WWA, switching the WWA host into debug mode
• Attaching the debugger

6.4.1 OBTAINING A DEVELOPER LICENSE

The App Store is the source for Modern Applications. This enables Microsoft to ensure an excellent user
experience for each application acquired. A ramification of this, however, is that users and developers
are not able to install Modern Applications from any source they choose. As a result, Windows supports
developers installing uncertified applications while at the same time discouraging standard users from
doing so.

To install an application which is not acquired from the App Store, you obtain a developer license by
registering with the App Store. Payment is not required – only a Live ID.

Once you’ve registered with the App Store, you use a tool provided with the SDK (Modern or Full), which
downloads a license from the Store (Note: Visual Studio and Expression Blend automate this for
developers through public APIs). This license will enable a developer to install any application.

6.4.2 DEPLOYING THE APPLICATION

In Development Mode, application deployment occurs directly from the binary location of the app’s
source, known as “run from layout” deployment. A full registration of the application does occur, but
the physical files continue to reside in the location they were registered from. To enhance system
robustness, the Package Manifest is copied to the single-instance storage location in addition to the
source location.

6.4.3 IMMERSIVE WINDOW

Due to the nature of immersive windowing in the MoSh, a debug environment is needed for developers
to fully test and debug their applications. Since apps generally run full-screen, it would otherwise be
difficult to have both the debugger and the immersive application displaying at the same time. In the
debugging mode for the MoSh, a developer can:

• View their application and Visual Studio side by side
• Test the application in multiple views (immersive, docked, and background).
• Test for different resolutions.
• Test landscape and portrait layouts.
• Emulate the touch environment so that you can simulate touch interaction using your existing

hardware.

Elements of Mosh: the developer story Page 252 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• Emulate the sensor environment for GPS devices
• Emulate the app store for testing in-app purchases.
• Test the tile representation of the application and toast notifications.

6.4.4 (WWA ONLY) SWITCHING THE WWA HOST INTO DEBUG MODE

The JavaScript engine that powers Windows Web Applications is highly optimized and uses JITing to
“compile” the otherwise interpreted JavaScript language for greater performance. While JITing provides
better performance, it has the side effect of making JavaScript code more difficult to debug. When a
developer signals that they’d like to debug a WWA, the IDE informs the WWA Host, which sets an
internal flag that’s read by the JavaScript engine. The JavaScript engine prepares the process for
debugger attach by turning off JITing of JavaScript code and loading PDM.DLL (as shipped by VS or a 3rd
party).

6.4.5 ATTACHING THE DEBUGGER

The final step in the debugging process is attaching the debugger. Upon release, the WWA Host and the
MoSh return to their normal state.

7 DEVELOPER GUIDANCE

This section provides an overview of MoSh elements for developers who want to plan and write early
MoSh apps.

7.1 ONE OR MULTIPLE APPS PER PACKAGE?

One of the decisions you face when building immersive applications is whether to put one application in
a package by itself or many applications in a single package. When deciding, you should consider the
business and technical impact of your deployment choice.

7.1.1 BUSINESS IMPACT

The following sections describe the business impacts of different packaging choices.

7.1.1.1 ONE PACKAGE, ONE PRODUCT IN THE APP STORE
Each product in the App Store maps to a single package. That means that you have one price and one
product page for a package, regardless of how many tile-producing applications the package contains.
The user sees a single listing in the Store for those applications. For example, Office might have a single
package that contains Word, Excel, and PowerPoint. The user would have to find the “Office” application
in the App Store and buy it to get these three applications. There would be no listings in the store for

Elements of Mosh: the developer story Page 253 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Word, Excel, and PowerPoint individually (though keyword searches could still return the “Office”
package).

7.1.1.2 ONE PRODUCT, ONE LICENSE
Building on the preceding example, if Word, Excel, PowerPoint are all available in the store as separate
products (in individual packages) as well as a product called Office with all three applications (in its own
individual package), buying one product won’t give you a discount or credit towards the other products.

If the user were to buy all four of these products, they would not share state, share settings, or be able
to integrate with each other because they each have their own isolated view of the system.

7.1.1.3 UPGRADES ARE ALWAYS FREE

An upgrade, no matter how major, is always free. The App Store is discussing whether or not developers
could charge for an update to a new major version of the product, but this is currently not in the POR for
Windows 8 RTM.

7.1.1.4 PRODUCTS CAN’T INSTALL OR UNINSTALL OTHER PRODUCTS
From a licensing and installation perspective, there is no relationship between products. That means
that if you purchase Word as a separate product, you cannot buy or install PowerPoint or other parts of
the Office suite from within the Word application.

File type associations let you launch the application through a link to a file if it is already installed, but
there is no way to turn that file association into an application purchase.

You might be able to link to the App Store product page for the user to buy another application, but it is
not possible to send users to the App Store when they try to open a particular file type, then
automatically open the document after they’ve purchased the app that can open that file.

7.1.1.5 IN APP PURCHASES CAN “UNLOCK” APPLICATIONS BUT NOT APP TILES
There are APIs for in-application purchases that allow developers to define code that unlocks features
based on some transaction with the user. These APIs do not enable the application to download and
execute new code: the Application Container prohibits downloading and executing new code, as does
App Store policy. Developers using in-app purchasing APIs to unlock features should download all of the
bits as a part of the initial package.

There is no way to create an App Tile outside of deployment; you cannot add additional App Tiles when
the user makes in-app purchases. For example, there is no way to only show the user a PowerPoint App
Tile for the Office product they bought in the App Store and then, after an in-app purchase, another App
Tile is for Word.

Elements of Mosh: the developer story Page 254 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

7.1.2 TECHNICAL IMPACT

This section focuses on the technical impact of deciding whether to break up your application into
individual packages for each application or whether to bundle all of your applications into a single
package. There are three main areas that impact this decision:

• Application Container
• App Store Technical Policy for Application Packages and Framework Packages
• Immersive Shell Contracts Scope

7.1.2.1 APPLICATION CONTAINER

All immersive applications install through the App Store and are constrained through the Application
Container. The Application Container is an Access Control List (ACL) -based resource security mechanism
that protects applications from each other and enables customers to install apps from the App Store
with confidence. For more details about Application Container, please see the Application Container
wiki.

How does the Application Container affect how you package your applications? If you choose to package
your applications in separate packages, they can’t do the following:

• Send messages back and forth.
• IPC.
• Share settings or storage.
• Share COM or MoCOM objects.
• Share code between packages.
• Know the file path to the other package.
• Share registry keys (or use the registry to communicate at all).
• Send network messages directly to each other.
• Write shared files to the user’s profile.

Being in different packages completely isolates all of your applications from each other. The diagram
that follows shows how the system can communicate with processes in Application Containers, but
nothing else can. Being in the same package doesn’t have the same restrictions. Multiple applications
and multiple processes can be spawned within a single Application Container; applications in the same
package are in the same Application Container and can therefore truly integrate with each other
through means such as code sharing, IPC, and shared COM objects.

Elements of Mosh: the developer story Page 255 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

7.1.2.2 APP STORE POLICY LIMITATIONS FOR PACKAGES

The DevX wiki provides partners with the latest information about how to think about packaging their
applications. The presentation on package terminology is useful for understanding packaging as of M2.
When determining whether to package your applications together or separately, there are some
important technical App Store policy decisions to consider:

§ Application Packages contain all of the resources, that when deployed, present a tailored
application to users. One product in the App Store equals one application package, meaning:

§ Application developers cannot share code by creating a private package that is shared
between multiple packaged applications.

§ Application developers must package all of their libraries, controls, resources (DLLs,
languages, images, etc.) into a single application package. Using the Office example
described previously, if Word and PowerPoint shared an MSO.DLL (10 MB), this DLL
would need to be packaged separately in both the Word and PowerPoint packages if
Word and PowerPoint were packaged separately, duplicating the size on disk and in
memory. If Word and PowerPoint were in a single package, the DLL can be shared by
both of them, reducing disk and memory usage.

§ Immersive applications will be prohibited from accessing APIs that would enable
communicating with desktop applications and installed services that are not a part of

Elements of Mosh: the developer story Page 256 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Windows that may be attempting to circumvent Application Container limitations.
Therefore, creating integration between two immersive applications through installed
desktop applications is prohibited by App Store policy.

§ Framework Packages contain the runtimes and code resources that any Application Package can
consume to build and render their tailored applications for users. There will only be a small
selection of Framework Packages supported during the lifetime of Windows 8 by the App Store
because of these frameworks cost much more to deploy and manage. All Framework Packages
are 1st party (Microsoft-written code).

§ Because this Framework Package list is limited, developers needing to share code
between a set of Application Packages will not be able to simply solve their problem by
creating a Framework Package.

§ The App Store is focusing on “runtime” Framework Packages that support MoSh
contracts and enable the creation of large sets of applications through new
programming languages, controls, and APIs. Examples of runtime Framework Packages
include the C Runtime and the Corsica JavaScript framework.

Application Packages Framework Packages

7.1.2.3 IMMERSIVE SHELL CONTRACTS

MoSh contracts can seem like they provide ways to work around some of the resource and
communication limitations imposed by Application Container and the packaging limitations imposed
through App Store policy. For example, the Sharing contract seems like a way for two applications,
isolated by their Application Containers, to push data back and forth to each other. There are some
problems with this approach:

• Even though the Sharing contract does enable data to be passed between two applications, the
data types are limited, and the cognitive disconnect the contract imposes (there is UI that pops

Elements of Mosh: the developer story Page 257 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

up and must be interacted with to make a connection to a list of applications that may include
your app and others) makes this solution suboptimal, especially for applications that require a
high degree of integration.

• Share uses a push model where the user has completed their task in one application and is
moving on to another application to finish the task completely. This doesn’t work for tasks
where the user expects to move quickly back and forth between the two applications.

7.1.3 THE SOLUTION

Circumventing Application Container restrictions by using network services and MoSh contracts is not a
viable approach for most application. When the user will be switching back and forth between the
applications, and when applications share settings and share objects in memory, you should consider
packaging your applications into a single Application Package.

If your applications are very different and won’t be used together, and if they do not share enough code
to create disk space issues, separate your apps into multiple packages.

Elements of Mosh: the developer story Page 258 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Elements of Mosh: the developer story Page 259 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

7.2 RELATIONSHIP BETWEEN MOSH AND DESKTOP APPS

MoSh apps are fundamentally different than classic, full-trust desktop apps. One mistake developers
make when first considering how build a MoSh app is to think about porting existing desktop features or
functionality into a new MoSh app.

The MoSh is an entirely new shell whose purpose, affordances, security model, and constraints are as
different from the classic desktop app model as the DOS box is to the Windows desktop GUI. Planning a
MoSh app requires a new way of thinking about your users, scenarios, interaction model, data, storage,
and resources. The MoSh App First model also requires rethinking the relationship between users’
content (files, pictures, videos, data) and their applications.

7.2.1 APP FIRST

The App First principle means that, by design, there is no “Windows Explorer” in the MoSh. App First
implies there is no way to natively browse or explore content outside of the framework of an App.
Some apps might want to provide a content (or “library”) view as their primary experience: for example,
a media app might display a flat list of songs or albums, making it very easy for users to select and play
music. Another example is a photo gallery app displays a flat or sorted list of users’ locations and
accompanying cloud-based photos so that users can casually browse or share their photos. However,
there is no generic Windows-provided file-system “explorer” designed to help users launch apps
through classic file associations.

7.2.2 FILE SYSTEM ACCESS VIA PICKERS

User-driven file system access is only possible through the MoSh Picker. The MoSh Picker enables users
to quickly import or save files between their apps and common system locations and devices. The
Picker is not intended to be a Common File Dialog. By design, there is no navigation pane, breadcrumb
bar, or search. It is not intended for management tasks such as renaming, deleting, rotating, or
managing files. It has one focused purpose: to enable users to quickly import or save files between their
apps and the file system.

7.2.2.1 GUIDANCE FOR GALLERY APPS

Gallery apps are defined as apps that aspire to expose a large, aggregated data set in a browse-able
view, letting you smoothly and seamlessly move throughout the set and take action on items. They are
predominantly a grid that allows smooth panning, high fidelity thumbnails, sorting, filtering, resizing
items in the view, launching, connecting to web services, and search. They also will increasingly be
expected to work over multiple sources such as local libraries, HomeGroups, offline content (a detached
USB drive or device), smart phones, web storage (such as SkyDrive), social networking, and sharing

Elements of Mosh: the developer story Page 260 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

websites like Flickr or Facebook. (Of all these, only local libraries and HomeGroup are supported
by Windows indexing.)

The biggest question for a gallery app is whether to create its own custom database or leverage the File
Broker to store data, sync data, generate views, and search. For rising star developer apps, the platform
solution should be sufficient, but most top tier competitive gallery apps will need create their own
database.

The Windows platform solution is recommended for apps with the following characteristics:

• All data for the app lives in libraries or indexed scopes and only use system supported file types
(jpeg, wma, mp3, xml, text, and Office document formats).

o The file broker\indexer can provide views and content search over file system content
that is in an indexed location and corresponds to a supported file type.

• The app does not need to extend the property system, provide per-user metadata, or extend
metadata to non-supported types (such as tagging AVI or PNG files).

Creating a custom database, rather than using the Windows platform solution, is recommended for apps
with the following characteristics:

• The app needs to represent data beyond default File system capabilities for supported types or
use a new storage type that isn’t supported in-box.

• The app needs to generate fast views over non-indexed locations, such as the web, UNC, thumb
drives, other devices, and optical media.

• The app needs fine-tuned for better performance or needs granular control of its views.

7.2.2.2 WITHIN GALLERY APPS THERE ARE 2 DISTINCT TYPES OF APPS

There are two types of gallery apps: top-tier competitive gallery apps and rising star developer gallery
apps.

7.2.2.2.1 TOP-TIER COMPETITIVE GALLERY APPS

The primary purpose of theses app is to expose a flat or aggregated gallery, often from multiple data
sources. These apps are typically in highly competitive verticals such as music, pictures, or videos and
compete against a multitude of apps vying for market share (for example, Zune, WMP, Live Photo
Gallery, iTunes, iPhoto, Picasa, and Adobe elements). These apps typically have a large number of
developers building and streamlining the app, and they will go to great lengths for any competitive edge
in the space by adding enhanced features, service integration, and speed improvements. If the Windows
platform does not provide an ideal solution aligning with their goals, these companies will invest in large
dev teams to create and manage their own databases. Building and managing their own database
means these developers will have more granular control over their views, performance, syncing, and

Elements of Mosh: the developer story Page 261 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

aggregation without constraints imposed by using a more general-purpose system component, such as
the Windows Indexer. Typically, these apps also have a monetization path beyond selling the
application that supports the larger dev investment required to write and manage a database. Many of
these apps will also be competing with their existing desktop versions that have years of previous
feature investment and already target multiple platforms.

7.2.2.2.2 RISING STAR DEVELOPER GALLERY APPS

These gallery apps don’t have or necessarily require the larger development investments of top-tier
apps, nor do they provide feature parity. These developers want to take advantage of as many built-in
platform solutions as possible and will likely concentrate on a smaller amount of value-adds in the
app. They are more likely to just use what is in the platform if it meets their basic needs. The
monetization path for these apps is typically just selling the app itself. Because these apps are more
dependent on system components for data, their ability to aggregate data across un-indexed data
sources might be limited, and opportunities to optimize and customize the app for specific scenarios is
likewise limited.

7.2.2.3 GUIDANCE FOR TOP TIER COMPETITIVE GALLERY APPS

• Browsing
o The app should provide a custom database to ensure a consistent browsing experience

that performs well.
o This database needs to cache information (such as thumbnails, metadata, context,

timestamps, and custom properties) from all the sources it cares about, such as the local
PC, online storage, and so on, to provide a consistent user experience.

o When consuming local content, the app should use the File Broker query APIs to import
the important properties into the custom database.

o If the app needs properties that aren’t available from the File Broker query APIs, it
should use the File broker API to access and extract properties for the database directly
from the files.

• Sorting and filtering
o To guarantee consistent performance, fast sorting, pivoting, and filtering should be

provided by the app’s custom database.
o An alternate option is to use the File Broker query APIs to create a quick (but potentially

inaccurate) view. This can help increase perceived performance, but at the risk of items
being out of sync or unavailable if they are un-indexed.

• Search
o Search should be driven by the local custom app database.
o An alternate option is to use the File Broker query APIs, but the data might be out of

sync, especially when the app aggregates data from non-indexed locations. This
approach only works for supported file types.

• Type Ahead for search

Elements of Mosh: the developer story Page 262 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

o The app should merge local and service-enabled type ahead (if the gallery covers local
content) when providing type ahead.

7.2.2.4 GUIDANCE FOR RISING STAR DEVELOPER GALLERY APPS

• Browsing
o The app can use the Windows system index via the File Broker to directly build a

browsing view. (Note that this approach will be slower than querying a custom
database.)

o The File Broker supports the following query-backed views:
§ Generic: Folder, Date
§ Music: Song, Artist, Album, Title, Genre, Composer, Album Artist, Recorded

Month
§ Photo: Date Taken, Months, Years, Tags, Ratings

• Sorting and filtering
o Sorting and filtering can be accomplished by using the File Broker query-backed views

(shapes) built on the system indexer. (Note: shapes are non-extensible lists of index-
backed views defining how data can be returned to the app from the broker.)

• Search
o Search can be provided by using the File Broker query APIs.
o Search results can also be returned in any of the query backed-view (shapes)

arrangements.
• Typeahead for search

o If the app only displays local content, use local type ahead.
o Otherwise, the type ahead provided should be a merge of local and service-enabled

type ahead.

7.2.2.5 SUMMARY

App developers should carefully consider the trade-offs listed in the preceding sections before assuming
one of the two solutions will be right for their users. Both solutions have trade-offs and limitations.

Using the File Broker\indexer as your app database and data collector:

Pros:

• Less work: leverages existing system components and services.
• Easy to use for quick simple apps that are not designed to be full-blown media library apps that

compete with desktop apps.

Cons:

• There might be performance constraints.
• There are fewer customization possibilities.
• Not all data sources are indexed.

Elements of Mosh: the developer story Page 263 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Building your own custom app database and data collector:

Pros:

• Provides more control over performance and customization.
• Is better for aggregated views from multiple data sources.

Cons:

• Requires more work: involves building and managing a database and keeping it in sync with the
file system and other data sources.

• Requires more overall system resources to initially fill the database by harvesting data from the
file system and other data sources.

7.3 WORKING WITH DEVICES

The Windows device ecosystem is open and diverse. Windows 8 helps modern application developers
tap into this ecosystem by ensuring that the devices developers want to use are available on Windows
systems, and it makes using such devices familiar and straightforward. Windows 8 also makes it easy for
modern application developers to take advantage of innovative devices to create specialized, vertical
solutions. Windows 8 provides a lightweight system that balances developer simplicity with the need to
provide users with the confidence to let modern applications access their devices.

7.3.1 A TAXONOMY OF DEVICE FUNCTIONALITY

Not all device functionality is the same. This simple taxonomy helps illustrate how Windows 8 has
approached factoring and delivering device functionality for modern application developers.

7.3.1.1 CORE DEVICE FUNCTIONALITY

Modern application developers just expect certain device functionality to be available on every
Windows system. Such functionality includes mouse and keyboard input, graphics output, and audio
input and output. Microsoft works together with its hardware partners to ensure that almost all
systems available in the market support a core hardware profile. Windows itself relies on such device
technology. Windows APIs are available to developers to ensure consistent and common behavior
across partner hardware.

7.3.1.2 MODERN DEVICE FUNCTIONALITY

Modern application developers increasingly expect to rely on newer device functionality that has
become commonplace, especially mobile form-factors. Such functionality includes location/GPS,
webcam, multi-touch input, accelerometer, and near-field proximity. Microsoft works together with its
hardware partners to ensure that appropriate systems in the market support a modern hardware

Elements of Mosh: the developer story Page 264 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

profile. For such device functionality, Windows APIs are available to developers to ensure consistent
and common behavior across partner hardware.

7.3.1.3 EVERYDAY DEVICE FUNCTIONALITY

Users often bring hardware to their system for use in their everyday life. Modern application developers
might want to create tailored experiences for these everyday devices. Some device functionality, such
as printing and removable storage and remote media renderers, is interesting to many classes of
applications. Other device functionality, such as smart card and mobile broadband modems, is
interesting only to specialized classes of applications. Microsoft works together with its hardware
partners to ensure that their everyday hardware solutions work well with Windows. For such device
functionality, Windows provides in-box APIs to ensure consistent and common behavior for partner
hardware.

7.3.1.4 INNOVATIVE DEVICE FUNCTIONALITY

Users might also add hardware to their systems that isn’t already supported by Windows. Modern
application developers who target such hardware usually do so because they also sell the hardware, or
because they have a business relationship with the provider of the hardware. Windows enables
developers to access innovative hardware with ease when they explicitly target the hardware and
develop for it. Microsoft works together with hardware partners who provide innovative solutions to
ensure they work well with Windows.

7.3.2 PROGRAMMING MODEL CONSIDERATIONS

When designing how modern application developers access devices in Windows 8, several factors were
taken into consideration.

7.3.2.1 TARGETING FRAMEWORKS

As described previously, modern applications can be developed in several different languages and
presentations frameworks. And it’s primary goal to make it easy and familiar for modern application
developers to be able to work with devices. To meet that goal, Windows uses these guidelines in
exposing device functionality to developers:

• If the functionality is heavily tied into framework abstractions (notably presentation and
media) and needs to interact with existing framework data structures, the API into that
framework. In these cases, there is usually an existing framework that provides the needed
functionality. For Windows 8, these frameworks are adapted to support modern application
development. One example is the Windows Printing API, which provided the foundation
for XAML/C++ and HTML/JS/CSS versions of the Printing framework.

Elements of Mosh: the developer story Page 265 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• If there is functionality in a framework due to existing, well-established standards
considerations (this is common with HTML/JS/CSS), Windows implements he standard for that
framework. Because there often isn’t a well-established API for all frameworks, the API might
be implemented in a broadly-adapted way within the Windows Runtime. An example is the
Windows Location API, which contains an implementation of the W3C-defined GeoLocation API;
another example is the Windows Webcam API, which adds webcams as a source for the HTML5
video tag.

• If the functionality has no existing model in any of the frameworks, then the Windows APIs are
implemented directly within the Windows Runtime so that they are available to all supported
frameworks. If the functionality has well-established abstractions in all existing frameworks and
there is no need for a new API (because there are no shortcomings in these current
abstractions), then the existing APIs are adapted for the Windows Runtime.

7.3.2.2 DEALING WITH DUPLICATION

When adapting Windows APIs to developer frameworks, duplication can be an issue. The following are
some ways duplication issues have been dealt with:

• When an API does not make sense for a particular framework (for example, threading in
JavaScript), it has been omitted from that framework. In this case, duplication is avoided.

• An existing Windows API may not have been appropriate to carry forward. So we would
implement a new API in the Windows Runtime and adapt this to all frameworks. There would
be no duplication in such a case and the old API would not be available for use via WinRT
projections.

• There might be an existing API that must be supported (such as standards APIs) but a Windows
API also exists that provides additional functionality. Duplication is allowed in such cases.

7.3.3 USER CONFIDENCE IN DEVICE ACCESS

Devices form an integral part of a user’s PC experience. Devices such as webcams, printers, and cameras
are commonly used and are expected to work flawlessly with the PC. Yet, in a modern, connected
environment, using some of these devices may concern users. Some devices, such as the webcam and
microphone, disclose Personally Identifiable Information (PII). Other devices, such as the broadband
modem and SMS, use metered services that may cost a significant amount of money.

The Windows 8 application model categorizes devices as base trust, sensitive, or custom.

• Base trust devices are those that users can be confident in Windows developers just being
always allowed to use. These devices, such as printers and accelerometers, do not present a
threat to the user in terms of disclosing PII or costing money.

Elements of Mosh: the developer story Page 266 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

• Declared devices are those that users can be confident in Windows developers being allowed to
use, but only where the developer has declared the use of the device. This declaration is
disclosed in the Windows UI to transparently help users know when an app needs to use a
specific kind of device.

• Sensitive devices require that the application declare the capability to access them, and the
user must provide consent to let the application use them. Consent is managed on a per-
application, per-device-class basis. A consent UI that helps the user understand the specific
device capability being requested is presented to the user at device access time. This lets the
application present context in the application flow prior to the access attempt to help the user
understand why the access should be granted (for example, consider a mapping application
trying to access the PC’s location). At any time, the user may use system UI to remove access to
a sensitive device class from an application. It’s important for developers to know what devices
are sensitive and to design their applications to account for this revocation possibility.

• Custom devices are those devices that Windows doesn’t know much about. Through a set of
declarations associated with the device driver and in the application manifest, only the
application that goes with the custom device is allowed to use it. Users can have confidence
that no other application can use the device otherwise.

Elements of Mosh: the developer story Page 267 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

7.3.4 LIST OF SUPPORTED APIS

The following list of device access APIs are currently supported for Windows 8. Where the declaration
policy is either “Consent Required” or “Declaration Required”, the device capability must be declared in
the application manifest. Where the declaration policy is “Always Allowed”, no declaration need be
made.

Description WinRT Namespace Declaration Policy Manifest Declaration
Microphone Windows.Devices.Audio.In Consent Required Microphone
Webcam Windows.Devices.Video.In Consent Required Webcam
Location Windows.Devices.Geoloca

tion
Consent Required Geolocation

Phone text
message

Windows.Devices.Wpd.Sm
s

Consent Required PortableSms

PC text
message

Windows.Devices.Sms Consent Required PcSms

Removable
storage

Windows.Storage Declaration Required RemovableStorage

Near field
proximity

Windows.Networking.Prox
imity

Declaration Required NearFieldProximity

Portable Windows.Devices.Wpd Declaration Required GUID

Elements of Mosh: the developer story Page 268 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

device

Portable
device
contacts

Windows.Devices.Wpd.Co
ntacts

Declaration Required GUID

Portable
device
calendars

Windows.Devices.Wpd.Cal
endar

Declaration Required GUID

Portable
device tasks

Windows.Devices.Wpd.Tas
ks

Declaration Required GUID

Portable
device notes

Windows.Devices.Wpd.No
tes

Declaration Required GUID

Portable
device status

Windows.Devices.Wpd.Sta
tus

Declaration Required GUID

Portable
device
ringtones

Windows.Devices.Wpd.Rin
gtones

Declaration Required GUID

Accelerometer Windows.Devices.Sensors.
Accelerometer

Always Allowed n/a

Inclinometer Windows.Devices.Sensors.
Inclinometer

Always Allowed n/a

Compass Windows.Devices.Sensors.
Compass

Always Allowed n/a

Gyrometer Windows.Devices.Sensors.
Gyrometer

Always Allowed n/a

Orientation
sensor

Windows.Devices.Sensors.
OrientationSensor

Always Allowed n/a

Simple
orientation
sensor

Windows.Devices.Sensors.
SimpleOrientationSensor

Always Allowed n/a

Light sensor Windows.Devices.Sensors.
LightSensor

Always Allowed n/a

Printer Windows.Devices.Print Always Allowed n/a

7.3.5 VERTICAL SCENARIOS: DEVICE INNOVATION AND DEVICE COMPANION
APPLICATIONS

Elements of Mosh: the developer story Page 269 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

Modern application developers may want to build a vertical solution that combines their application
with innovative hardware and services on the Internet. Windows 8 supports two technologies that
make such products easier to create and distribute.

7.3.5.1 CUSTOM DEVICE ACCESS

The Application Container model denies system resources to the modern developer by default. As
discussed earlier, device stacks built in to Windows broker device access to modern applications
depending on the device capabilities model and, if necessary, user consent.

Windows supports device developers obtaining brokered access through the device I/O manager to a
custom driver implementing a proprietary device interface class declared as a trusted capability in the
application manifest. It is the responsibility of the application developer to write to the device
interface. The best-practice is to create a MoCOM extension and deliver it with the modern
application. This approach makes it easy to develop an application that uses the custom device with any
framework.

Custom device access is supported only by the privileged application designed to work with the
device. No other application may access the device. Privileging of the specific device is done through
device metadata associated with the custom device driver.

7.3.5.2 DEVICE COMPANION APPLICATION

A Device Companion Application (DCA) is a modern application that is tightly associated with a particular
device or family of devices. Windows can support automatically and seamlessly installing a DCA at the
time a device is installed with Windows. The DCA can work with in-box device capabilities or custom
device capabilities.

When a user connects a device to Windows or discovers the device on the network and initiates pairing
with the device, Windows determines the device drivers to install for the device. If the user has
consented to let Windows look online to complete device setup, Windows obtains any necessary drivers
and installs them. Then, if the device maker has created a DCA for the device and put this into the Store,
Windows will also find and install that application. Once the application is installed, the user is invited
to launch it.

A DCA can be developed just like any other modern application. The application must meet certain
requirements that are validated at application onboarding to ensure the application’s close association
with the device (or family of devices). The device and its associated device metadata must also pass
WHQL requirements.

7.3.6 EXAMPLES OF WORKING WITH DEVICES

Elements of Mosh: the developer story Page 270 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

7.3.6.1 USING LOCATION

Look here for the latest on using the Navigator.Geolocation and Windows.Devices.Geolocation
namespaces:

http://windows/windows8/dnt/dcon/DCON%20Team%20WIKI/Location.aspx

7.3.6.2 USING SENSORS

Look here for the latest on using the Sensor APIs in Windows:

http://windows/windows8/dnt/dcon/DCON%20Team%20WIKI/Windows%20Runtime%20Sensors.aspx

7.3.6.2.1 TYPICAL USE SCENARIOS FOR SENSORS

Accelerometer

• Handheld device gaming (PC as handheld device)
• Shake gestures

Inclinometer

• Handheld device gaming (PC as handheld device)
• Handheld device as tool (a level)
• Device orientation detection

Compass

• Navigation using handheld device (PC as handheld device)

Light Sensor

• Modify application display characteristics based on lighting conditions (e.g., night view)
• Automatic color correction

7.3.6.2.2 SENSOR APIS

Windows.Devices.Sensors.Accelerometer

Windows.Devices.Sensors.Inclinometer

Windows.Devices.Sensors.Compass

Windows.Devices.Sensors.LightSensor

7.3.6.2.3 JAVASCRIPT EXAMPLE (ACCELEROMETER)

Elements of Mosh: the developer story Page 271 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

<html>
<head>
 <title>WinRT Inclinometer Sample</title>
 <script type="text/javascript" language="javascript">
 function outputReport(e) {
 /* Example output for an accelerometer at rest at sea level:
 * {"Timestamp":712534723,"AccelerationX":0,"AccelerationY":0,
"AccelerationZ":1}
 */

 document.getElementById("readingOutput").innerHTML =
JSON.stringify(e);
 }

 function onDataChanged(e) {
 outputReport(e);
 }

 document.addEventListener("DOMContentLoaded", onReady, false);
 function onReady() {
 var sensor =
Windows.Devices.Sensors.Accelerometer.getDefault();
 if (sensor != null) {
 sensor.addEventListener("readingchanged", onDataChanged,
false);
 }
 }
 </script>
</head>
<body>

</body>
</html>

7.3.6.2.4 JAVASCRIPT EXAMPLE (INCLINOMETER)

<html>
<head>
 <title>WinRT Inclinometer Sample</title>
 <script type="text/javascript" language="javascript">
 function outputReport(e) {
 /* Example output for an inclinometer on a horizontal surface:
 * {"Timestamp":712534723,"TiltInDegreesX":0,"
TiltInDegreesY":0," TiltInDegreesZ":0}
 */

Elements of Mosh: the developer story Page 272 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 document.getElementById("readingOutput").innerHTML =
JSON.stringify(e);
 }

 function onDataChanged(e) {
 outputReport(e);
 }

 document.addEventListener("DOMContentLoaded", onReady, false);
 function onReady() {
 var sensor =
Windows.Devices.Sensors.Inclinometer.getDefault();
 if (sensor != null) {
 sensor.addEventListener("readingchanged", onDataChanged,
false);
 outputReport(sensor.getCurrentReading());
 }
 }
 </script>
</head>
<body>

</body>
</html>

7.3.6.2.5 JAVASCRIPT EXAMPLE (COMPASS)

<html>
<head>
 <title>WinRT Compass Sensor Sample</title>
 <script type="text/javascript" language="javascript">
 function outputReport(e) {
 /* Example output for a compass on a horizontal surface,
heading magnetic north,
 * with declination of zero, and with tilt compensation:
 * Heading (TrueNorth) = 0,
 * TiltCompensated
 */
 var t = "Heading (MagneticNorth) = " + e.headingMagneticNorth;
 var caps = e.details.capabilities;

 document.getElementById("readingOutput").innerHTML = t;
 }

 function onDataChanged(e) {
 outputReport(e);
 }

 document.addEventListener("DOMContentLoaded", onReady, false);
 function onReady() {

Elements of Mosh: the developer story Page 273 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

 var sensor = Windows.Devices.Sensors.Compass.getDefault();
 if (sensor != null) {
 sensor.addEventListener("readingchanged", onDataChanged,
false);
 outputReport(sensor.getCurrentReading());
 }
 }
 </script>
</head>
<body>

</body>
</html>

7.3.6.2.6 JAVASCRIPT EXAMPLE (LIGHT SENSOR)

<html>
<head>
 <title>WinRT Light Sensor Sample</title>
 <script type="text/javascript" language="javascript">
 function outputReport(e) {
 /* Example output for a simple ambient light sensor in
complete darkness:
 * Illuminance = 0
 */
 var t = "Illuminance = " + e.illuminance;

 document.getElementById("readingOutput").innerHTML = t;
 }

 function onDataChanged(e) {
 outputReport(e);
 }

 document.addEventListener("DOMContentLoaded", onReady, false);
 function onReady() {
 var sensor = Windows.Devices.Sensors.LightSensor.getDefault();
 if (sensor != null) {
 sensor.addEventListener("readingchanged", onDataChanged,
false);
 outputReport(sensor.getCurrentReading());
 }
 }
 </script>
</head>
<body>

</body>
</html>	

Elements of Mosh: the developer story Page 274 of 274

Microsoft Confidential. © 2010 Microsoft Corporation. All rights reserved. These materials are confidential to and maintained as a trade secret by Microsoft
Corporation. Information in these materials is restricted to Microsoft authorized recipients only. Prepared for Error! Unknown document property name..

8 SAMPLE APPS AND ADDITIONAL LINKS

Sample apps – http://modernappstesting (see the Modern App Library link)

Wikis / FAQs – http://devxwiki, http://windows/windows8/uex/Partners/default.aspx

Alias for support / questions RE: building Windows 8 applications – dog8appbld

Writing high performance WWAs -
http://windows/windows8/DevX/DevXWiki/Wiki%20Pages/WWA%20Performance.aspx

Performance in relation to WinRT UI Apps –
http://windows/windows8/docs/Windows%208%20Feature%20Documents/Developer%20Experience%
20(DEVX)/DevDiv%20Specs/Org/Jupiter/Fundamentals/Performance/

A list of the Windows RunTime APIs available to MoSh Application Developers -
http://windows/windows8/DevX/rex/Shared%20Documents/Partner%20Engagement/API/Working%20-
%20WinRT.xlsx

